
Web Mining 

 

 

 

 

 

 

 

UNIT-I 

Introduction to Web Data Mining and Data 
Mining Foundations 



Unit-1 

1 Introduction 

 

 

 

Already know what the World Wide Web is and have used it extensively. 

The World Wide Web (or the Web for short) has impacted on almost every 

aspect of our lives. It is the biggest and most widely known information 

source that is easily accessible and searchable. It consists of billions of 

interconnected documents (called Web pages) which are authored by 

millions of people. Since its inception, the Web has dramatically changed 

our information seeking behavior. Before the Web, finding information 

means asking a friend or an expert, or buying/borrowing a book to read. 

However, with the Web, everything is only a few clicks away from the 

comfort of our homes or offices. Not only can we find needed information 

on the Web, but we can also easily share our information and knowledge 

with others. 

 

The Web has also become an important channel for conducting businesses. 

We can buy almost anything from online stores without needing to go to a 

physical shop. The Web also provides convenient means for us to 

communicate with each other, to express our views and opinions on 

anything, and to discuss with people from anywhere in the world. The Web 

is truly a virtual society. In this first chapter, we introduce the Web, its 

history, and the topics that we will study in the book. 

 

 

1.1 What is the World Wide Web? 

 

The World Wide Web is officially defined as a “wide-area hypermedia 

information retrieval initiative aiming to give universal access to a large 

universe of documents.” In simpler terms, the Web is an Internet-based 

computer network that allows users of one computer to access information 

stored on another through the world-wide network called the Internet.  

 

 The Web's implementation follows a standard client-server model. 

In this model, a user relies on a program (called the client) to connect to a 

remote machine (called the server) where the data is stored. Navigating 

through the Web is done by means of a client program called the browser, 

e.g., Netscape, Internet Explorer, Firefox, etc. Web browsers work by 

sending requests to remote servers for information and then interpreting 



2      1 Introduction

the returned documents written in HTML and laying out the text and 

graphics on the user’s computer screen on the client side.  

The operation of the Web relies on the structure of its hypertext

documents. Hypertext allows Web page authors to link their documents to 

other related documents residing on computers anywhere in the world. To 

view these documents, one simply follows the links (called hyperlinks).

The idea of hypertext was invented by Ted Nelson in 1965 [403], who 

also created the well known hypertext system Xanadu (http://xanadu.

com/). Hypertext that also allows other media (e.g., image, audio and video 

files) is called hypermedia.

1.2 A Brief History of the Web and the Internet 

Creation of the Web: The Web was invented in 1989 by Tim Berners-

Lee, who, at that time, worked at CERN (Centre European pour la Recher-

che Nucleaire, or European Laboratory for Particle Physics) in Switzer-

land. He coined the term “World Wide Web,” wrote the first World Wide 

Web server, httpd, and the first client program (a browser and editor), 

“WorldWideWeb”.

It began in March 1989 when Tim Berners-Lee submitted a proposal ti-

tled “Information Management: A Proposal” to his superiors at CERN. In 

the proposal, he discussed the disadvantages of hierarchical information 

organization and outlined the advantages of a hypertext-based system. The 

proposal called for a simple protocol that could request information stored 

in remote systems through networks, and for a scheme by which informa-

tion could be exchanged in a common format and documents of individu-

als could be linked by hyperlinks to other documents. It also proposed 

methods for reading text and graphics using the display technology at 

CERN at that time. The proposal essentially outlined a distributed hyper-

text system, which is the basic architecture of the Web.  

Initially, the proposal did not receive the needed support. However, in 

1990, Berners-Lee re-circulated the proposal and received the support to 

begin the work. With this project, Berners-Lee and his team at CERN laid 

the foundation for the future development of the Web as a distributed hy-

pertext system. They introduced their server and browser, the protocol 

used for communication between clients and the server, the HyperText 

Transfer Protocol (HTTP), the HyperText Markup Language (HTML)

used for authoring Web documents, and the Universal Resource Locator 

(URL). And so it began.



1.2 A Brief History of the Web and the Internet      3 

Mosaic and Netscape Browsers: The next significant event in the de-

velopment of the Web was the arrival of Mosaic. In February of 1993, 

Marc Andreesen from the University of Illinois’ NCSA (National Center 

for Supercomputing Applications) and his team released the first "Mosaic 

for X" graphical Web browser for UNIX. A few months later, different 

versions of Mosaic were released for Macintosh and Windows operating 

systems. This was an important event. For the first time, a Web client, with 

a consistent and simple point-and-click graphical user interface, was im-

plemented for the three most popular operating systems available at the 

time. It soon made big splashes outside the academic circle where it had 

begun. In mid-1994, Silicon Graphics founder Jim Clark collaborated with 

Marc Andreessen, and they founded the company Mosaic Communica-

tions (later renamed as Netscape Communications). Within a few 

months, the Netscape browser was released to the public, which started the 

explosive growth of the Web. The Internet Explorer from Microsoft en-

tered the market in August, 1995 and began to challenge Netscape.  

The creation of the World Wide Web by Tim Berners-Lee followed by 

the release of the Mosaic browser are often regarded as the two most sig-

nificant contributing factors to the success and popularity of the Web.  

Internet: The Web would not be possible without the Internet, which 

provides the communication network for the Web to function. The Inter-

net started with the computer network ARPANET in the Cold War era. It 

was produced as the result of a project in the United States aiming at main-

taining control over its missiles and bombers after a nuclear attack. It was 

supported by Advanced Research Projects Agency (ARPA), which was 

part of the Department of Defense in the United States. The first 

ARPANET connections were made in 1969, and in 1972, it was demon-

strated at the First International Conference on Computers and Communi-

cation, held in Washington D.C. At the conference, ARPA scientists linked 

computers together from 40 different locations.  

In 1973, Vinton Cerf and Bob Kahn started to develop the protocol later 

to be called TCP/IP (Transmission Control Protocol/Internet Proto-

col). In the next year, they published the paper “Transmission Control Pro-

tocol”, which marked the beginning of TCP/IP. This new protocol allowed 

diverse computer networks to interconnect and communicate with each 

other. In subsequent years, many networks were built, and many compet-

ing techniques and protocols were proposed and developed. However, 

ARPANET was still the backbone to the entire system. During the period, 

the network scene was chaotic. In 1982, the TCP/IP was finally adopted, 

and the Internet, which is a connected set of networks using the TCP/IP 

protocol, was born.



4      1 Introduction

Search Engines: With information being shared worldwide, there was a 

need for individuals to find information in an orderly and efficient manner. 

Thus began the development of search engines. The search system Excite

was introduced in 1993 by six Stanford University students. EINet Galaxy

was established in 1994 as part of the MCC Research Consortium at the 

University of Texas. Jerry Yang and David Filo created Yahoo! in 1994, 

which started out as a listing of their favorite Web sites, and offered direc-

tory search. In subsequent years, many search systems emerged, e.g., Ly-

cos, Inforseek, AltaVista, Inktomi, Ask Jeeves, Northernlight, etc. 

Google was launched in 1998 by Sergey Brin and Larry Page based on 

their research project at Stanford University. Microsoft started to commit 

to search in 2003, and launched the MSN search engine in spring 2005. It 

used search engines from others before. Yahoo! provided a general search 

capability in 2004 after it purchased Inktomi in 2003.  

W3C (The World Wide Web Consortium): W3C was formed in the 

December of 1994 by MIT and CERN as an international organization to 

lead the development of the Web. W3C's main objective was “to promote 

standards for the evolution of the Web and interoperability between 

WWW products by producing specifications and reference software.” The 

first International Conference on World Wide Web (WWW) was also 

held in 1994, which has been a yearly event ever since.  

From 1995 to 2001, the growth of the Web boomed. Investors saw 

commercial opportunities and became involved. Numerous businesses 

started on the Web, which led to irrational developments. Finally, the 

bubble burst in 2001. However, the development of the Web was not 

stopped, but has only become more rational since. 

1.3 Web Data Mining 

The rapid growth of the Web in the last decade makes it the largest pub-

licly accessible data source in the world. The Web has many unique char-

acteristics, which make mining useful information and knowledge a fasci-

nating and challenging task. Let us review some of these characteristics.  

1. The amount of data/information on the Web is huge and still growing. 

The coverage of the information is also very wide and diverse. One can 

find information on almost anything on the Web. 

2. Data of all types exist on the Web, e.g., structured tables, semi-

structured Web pages, unstructured texts, and multimedia files (images, 

audios, and videos). 



1.3 Web Data Mining      5 

3. Information on the Web is heterogeneous. Due to the diverse author-

ship of Web pages, multiple pages may present the same or similar in-

formation using completely different words and/or formats. This makes 

integration of information from multiple pages a challenging problem. 

4. A significant amount of information on the Web is linked. Hyperlinks 

exist among Web pages within a site and across different sites. Within a 

site, hyperlinks serve as information organization mechanisms. Across 

different sites, hyperlinks represent implicit conveyance of authority to 

the target pages. That is, those pages that are linked (or pointed) to by 

many other pages are usually high quality pages or authoritative pages

simply because many people trust them.  

5. The information on the Web is noisy. The noise comes from two main 

sources. First, a typical Web page contains many pieces of information, 

e.g., the main content of the page, navigation links, advertisements, 

copyright notices, privacy policies, etc. For a particular application, only 

part of the information is useful. The rest is considered noise. To per-

form fine-grain Web information analysis and data mining, the noise 

should be removed. Second, due to the fact that the Web does not have 

quality control of information, i.e., one can write almost anything that 

one likes, a large amount of information on the Web is of low quality, 

erroneous, or even misleading. 

6. The Web is also about services. Most commercial Web sites allow 

people to perform useful operations at their sites, e.g., to purchase 

products, to pay bills, and to fill in forms. 

7. The Web is dynamic. Information on the Web changes constantly. 

Keeping up with the change and monitoring the change are important is-

sues for many applications.  

8. The Web is a virtual society. The Web is not only about data, informa-

tion and services, but also about interactions among people, organiza-

tions and automated systems. One can communicate with people any-

where in the world easily and instantly, and also express one’s views on 

anything in Internet forums, blogs and review sites.  

All these characteristics present both challenges and opportunities for min-

ing and discovery of information and knowledge from the Web. In this 

book, we only focus on mining textual data. For mining of images, videos 

and audios, please refer to [143, 441].  

To explore information mining on the Web, it is necessary to know data 

mining, which has been applied in many Web mining tasks. However, 

Web mining is not entirely an application of data mining. Due to the rich-

ness and diversity of information and other Web specific characteristics 

discussed above, Web mining has developed many of its own algorithms.  



6      1 Introduction

1.3.1 What is Data Mining?  

Data mining is also called knowledge discovery in databases (KDD). It 

is commonly defined as the process of discovering useful patterns or 

knowledge from data sources, e.g., databases, texts, images, the Web, etc. 

The patterns must be valid, potentially useful, and understandable. Data 

mining is a multi-disciplinary field involving machine learning, statistics, 

databases, artificial intelligence, information retrieval, and visualization. 

There are many data mining tasks. Some of the common ones are 

supervised learning (or classification), unsupervised learning (or 

clustering), association rule mining, and sequential pattern mining. We 

will study all of them in this book.  

A data mining application usually starts with an understanding of the 

application domain by data analysts (data miners), who then identify 

suitable data sources and the target data. With the data, data mining can be 

performed, which is usually carried out in three main steps:  

Pre-processing: The raw data is usually not suitable for mining due to 

various reasons. It may need to be cleaned in order to remove noises or 

abnormalities. The data may also be too large and/or involve many 

irrelevant attributes, which call for data reduction through sampling and 

attribute selection. Details about data pre-processing can be found in 

any standard data mining textbook.  

Data mining: The processed data is then fed to a data mining algorithm 

which will produce patterns or knowledge.

Post-processing: In many applications, not all discovered patterns are 

useful. This step identifies those useful ones for applications. Various 

evaluation and visualization techniques are used to make the decision.  

The whole process (also called the data mining process) is almost always 

iterative. It usually takes many rounds to achieve final satisfactory results, 

which are then incorporated into real-world operational tasks. 

Traditional data mining uses structured data stored in relational tables, 

spread sheets, or flat files in the tabular form. With the growth of the Web 

and text documents, Web mining and text mining are becoming 

increasingly important and popular. Web mining is the focus of this book. 

1.3.2 What is Web Mining? 

Web mining aims to discover useful information or knowledge from the 

Web hyperlink structure, page content, and usage data. Although Web 

mining uses many data mining techniques, as mentioned above it is not 



1.3 Web Data Mining      7 

purely an application of traditional data mining due to the heterogeneity 

and semi-structured or unstructured nature of the Web data. Many new 

mining tasks and algorithms were invented in the past decade. Based on 

the primary kinds of data used in the mining process, Web mining tasks 

can be categorized into three types: Web structure mining, Web content 

mining and Web usage mining.  

Web structure mining: Web structure mining discovers useful knowl-

edge from hyperlinks (or links for short), which represent the structure 

of the Web. For example, from the links, we can discover important 

Web pages, which, incidentally, is a key technology used in search en-

gines. We can also discover communities of users who share common 

interests. Traditional data mining does not perform such tasks because 

there is usually no link structure in a relational table.  

Web content mining: Web content mining extracts or mines useful in-

formation or knowledge from Web page contents. For example, we can 

automatically classify and cluster Web pages according to their topics. 

These tasks are similar to those in traditional data mining. However, we 

can also discover patterns in Web pages to extract useful data such as 

descriptions of products, postings of forums, etc, for many purposes. 

Furthermore, we can mine customer reviews and forum postings to dis-

cover consumer sentiments. These are not traditional data mining tasks.  

Web usage mining: Web usage mining refers to the discovery of user 

access patterns from Web usage logs, which record every click made by 

each user. Web usage mining applies many data mining algorithms. One 

of the key issues in Web usage mining is the pre-processing of click-

stream data in usage logs in order to produce the right data for mining.  

In this book, we will study all these three types of mining. However, due 

to the richness and diversity of information on the Web, there are a large 

number of Web mining tasks. We will not be able to cover them all. We 

will only focus on some important tasks and their algorithms.  

The Web mining process is similar to the data mining process. The dif-

ference is usually in the data collection. In traditional data mining, the data 

is often already collected and stored in a data warehouse. For Web mining, 

data collection can be a substantial task, especially for Web structure and 

content mining, which involves crawling a large number of target Web 

pages. We will devote a whole chapter on crawling. 

Once the data is collected, we go through the same three-step process: 

data pre-processing, Web data mining and post-processing. However, the 

techniques used for each step can be quite different from those used in tra-

ditional data mining. 



2 Association Rules and Sequential Patterns 

Association rules are an important class of regularities in data. Mining of 

association rules is a fundamental data mining task. It is perhaps the most 

important model invented and extensively studied by the database and data 

mining community. Its objective is to find all co-occurrence relationships, 

called associations, among data items. Since it was first introduced in 

1993 by Agrawal et al. [9], it has attracted a great deal of attention. Many 

efficient algorithms, extensions and applications have been reported.  

The classic application of association rule mining is the market basket

data analysis, which aims to discover how items purchased by customers in 

a supermarket (or a store) are associated. An example association rule is  

 Cheese  Beer  [support = 10%, confidence = 80%]. 

The rule says that 10% customers buy Cheese and Beer together, and 

those who buy Cheese also buy Beer 80% of the time. Support and confi-

dence are two measures of rule strength, which we will define later.  

This mining model is in fact very general and can be used in many ap-

plications. For example, in the context of the Web and text documents, it 

can be used to find word co-occurrence relationships and Web usage pat-

terns as we will see in later chapters.  

Association rule mining, however, does not consider the sequence in 

which the items are purchased. Sequential pattern mining takes care of 

that. An example of a sequential pattern is “5% of customers buy bed first, 

then mattress and then pillows”. The items are not purchased at the same 

time, but one after another. Such patterns are useful in Web usage mining 

for analyzing clickstreams in server logs. They are also useful for finding 

language or linguistic patterns from natural language texts. 

2.1 Basic Concepts of Association Rules 

The problem of mining association rules can be stated as follows: Let I = 

{i1, i2, …, im} be a set of items. Let T = (t1, t2, …, tn) be a set of transac-

tions (the database), where each transaction ti is a set of items such that ti
I. An association rule is an implication of the form,  



14       2 Association Rules and Sequential Patterns 

 X Y, where X I, Y I, and X Y = .

X (or Y) is a set of items, called an itemset.

Example 1: We want to analyze how the items sold in a supermarket are 

related to one another. I is the set of all items sold in the supermarket. A 

transaction is simply a set of items purchased in a basket by a customer. 

For example, a transaction may be:  

{Beef, Chicken, Cheese},  

which means that a customer purchased three items in a basket, Beef,

Chicken, and Cheese. An association rule may be: 

 Beef, Chicken  Cheese, 

where {Beef, Chicken} is X and {Cheese} is Y. For simplicity, brackets 

“{” and “}” are usually omitted in transactions and rules. 

A transaction ti T is said to contain an itemset X if X is a subset of ti
(we also say that the itemset X covers ti). The support count of X in T

(denoted by X.count) is the number of transactions in T that contain X. The 

strength of a rule is measured by its support and confidence.

Support: The support of a rule, X Y, is the percentage of transactions in 

T that contains X Y, and can be seen as an estimate of the probability, 

Pr(X Y). The rule support thus determines how frequent the rule is ap-

plicable in the transaction set T. Let n be the number of transactions in T.

The support of the rule X Y is computed as follows: 

.
).  (

n

countYX
support (1)

Support is a useful measure because if it is too low, the rule may just oc-

cur due to chance. Furthermore, in a business environment, a rule cover-

ing too few cases (or transactions) may not be useful because it does not 

make business sense to act on such a rule (not profitable). 

Confidence: The confidence of a rule, X Y, is the percentage of transac-

tions in T that contain X also contain Y. It can be seen as an estimate of 

the conditional probability, Pr(Y | X). It is computed as follows:  

.
.

).  (

countX

countYX
confidence (2)

Confidence thus determines the predictability of the rule. If the confi-

dence of a rule is too low, one cannot reliably infer or predict Y from X.

A rule with low predictability is of limited use.    



2.1 Basic Concepts of Association Rules      15 

Objective: Given a transaction set T, the problem of mining association 

rules is to discover all association rules in T that have support and confi-

dence greater than or equal to the user-specified minimum support (de-

noted by minsup) and minimum confidence (denoted by minconf).

The keyword here is “all”, i.e., association rule mining is complete. Previ-

ous methods for rule mining typically generate only a subset of rules based 

on various heuristics (see Chap. 3).  

Example 2: Figure 2.1 shows a set of seven transactions. Each transaction 

ti is a set of items purchased in a basket in a store by a customer. The set I

is the set of all items sold in the store.  

t1: Beef, Chicken, Milk 
t2: Beef, Cheese 
t3: Cheese, Boots 
t4: Beef, Chicken, Cheese 
t5: Beef, Chicken, Clothes, Cheese, Milk 
t6: Chicken, Clothes, Milk 
t7: Chicken, Milk, Clothes 

Fig. 2.1.  An example of a transaction set 

Given the user-specified minsup = 30% and minconf = 80%, the following 

association rule (sup is the support, and conf is the confidence) 

Chicken, Clothes  Milk  [sup = 3/7, conf = 3/3] 

is valid as its support is 42.84% (> 30%) and its confidence is 100% (> 

80%). The rule below is also valid, whose consequent has two items:  

 Clothes  Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Clearly, more association rules can be discovered, as we will see later.  

We note that the data representation in the transaction form of Fig. 2.1 is 

a simplistic view of shopping baskets. For example, the quantity and price 

of each item are not considered in the model.  

We also note that a text document or even a sentence in a single docu-

ment can be treated as a transaction without considering word sequence 

and the number of occurrences of each word. Hence, given a set of docu-

ments or a set of sentences, we can find word co-occurrence relations.  

A large number of association rule mining algorithms have been re-

ported in the literature, which have different mining efficiencies. Their re-

sulting sets of rules are, however, all the same based on the definition of 

association rules. That is, given a transaction data set T, a minimum sup-

port and a minimum confidence, the set of association rules existing in T is 



16       2 Association Rules and Sequential Patterns 

uniquely determined. Any algorithm should find the same set of rules al-

though their computational efficiencies and memory requirements may be 

different. The best known mining algorithm is the Apriori algorithm pro-

posed in [11], which we study next.  

2.2 Apriori Algorithm 

The Apriori algorithm works in two steps: 

1. Generate all frequent itemsets: A frequent itemset is an itemset that 

has transaction support above minsup.  

2. Generate all confident association rules from the frequent itemsets:

A confident association rule is a rule with confidence above minconf.   

We call the number of items in an itemset its size, and an itemset of size k

a k-itemset. Following Example 2 above, {Chicken, Clothes, Milk} is a fre-

quent 3-itemset as its support is 3/7 (minsup = 30%). From the itemset, we 

can generate the following three association rules (minconf = 80%): 

Rule 1: Chicken, Clothes  Milk  [sup = 3/7, conf = 3/3] 

Rule 2:  Clothes, Milk   Chicken  [sup = 3/7, conf = 3/3] 

Rule 3:  Clothes  Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Below, we discuss the two steps in turn.  

2.2.1 Frequent Itemset Generation 

The Apriori algorithm relies on the apriori or downward closure property 

to efficiently generate all frequent itemsets.  

Downward Closure Property: If an itemset has minimum support, then 

every non-empty subset of this itemset also has minimum support. 

The idea is simple because if a transaction contains a set of items X, then 

it must contain any non-empty subset of X. This property and the minsup 

threshold prune a large number of itemsets that cannot be frequent.  

To ensure efficient itemset generation, the algorithm assumes that the 

items in I are sorted in lexicographic order (a total order). The order is 

used throughout the algorithm in each itemset. We use the notation {w[1], 

w[2], …, w[k]} to represent a k-itemset w consisting of items w[1], w[2], 

…, w[k], where w[1] < w[2] < … < w[k] according to the total order.  

The Apriori algorithm for frequent itemset generation, which is given in 

Fig. 2.2, is based on level-wise search. It generates all frequent itemsets by 



2.2 Apriori Algorithm      17 

making multiple passes over the data. In the first pass, it counts the sup-

ports of individual items (line 1) and determines whether each of them is 

frequent (line 2). F1 is the set of frequent 1-itemsets. In each subsequent 

pass k, there are three steps: 

1. It starts with the seed set of itemsets Fk 1 found to be frequent in the 

(k 1)-th pass. It uses this seed set to generate candidate itemsets Ck

(line 4), which are possible frequent itemsets. This is done using the 

candidate-gen() function.  

2. The transaction database is then scanned and the actual support of each 

candidate itemset c in Ck is counted (lines 5–10). Note that we do not 

need to load the whole data into memory before processing. Instead, at 

Algorithm Apriori(T)
1 C1  init-pass(T); // the first pass over T
2 F1  {f | f C1, f.count/n minsup};  // n is the no. of transactions in T
3 for (k = 2; Fk 1 ; k++) do // subsequent passes over T
4 Ck  candidate-gen(Fk 1);
5 for each transaction t T do // scan the data once 
6 for each candidate c Ck do    
7 if c is contained in t then
8 c.count++;
9 endfor
10 endfor
11 Fk  {c Ck | c.count/n minsup}
12 endfor
13 return F k Fk;

Fig. 2.2. The Apriori algorithm for generating frequent itemsets 

Function candidate-gen(Fk 1)

1 Ck ;  // initialize the set of candidates 

2 forall f1, f2 Fk 1 // find all pairs of frequent itemsets 

3 with f1 = {i1, … , ik 2, ik 1}  // that differ only in the last item  

4 and  f2 = {i1, … , ik 2, i’k 1}   

5 and ik 1 < i’k 1 do  // according to the lexicographic order 

6 c  {i1, …, ik 1, i’k 1};  // join the two itemsets f1 and f2
7 Ck Ck  {c};  // add the new itemset c to the candidates  

8 for each (k 1)-subset s of c do 

9 if (s Fk 1) then

10 delete c from Ck; // delete c from the candidates 

11 endfor

12 endfor

13 return Ck; // return the generated candidates 

Fig. 2.3. The candidate-gen function  



18       2 Association Rules and Sequential Patterns 

any time, only one transaction resides in memory. This is a very impor-

tant feature of the algorithm. It makes the algorithm scalable to huge 

data sets, which cannot be loaded into memory.  

3. At the end of the pass or scan, it determines which of the candidate 

itemsets are actually frequent (line 11).  

The final output of the algorithm is the set F of all frequent itemsets (line 

13). The candidate-gen() function is discussed below.  

Candidate-gen function: The candidate generation function is given in 

Fig. 2.3. It consists of two steps, the join step and the pruning step.

Join step (lines 2–6 in Fig. 2.3): This step joins two frequent (k 1)-

itemsets to produce a possible candidate c (line 6). The two frequent 

itemsets f1 and f2 have exactly the same items except the last one (lines 

3–5). c is added to the set of candidates Ck (line 7).

Pruning step (lines 8–11 in Fig. 2.3): A candidate c from the join step may 

not be a final candidate. This step determines whether all the k 1 sub-

sets (there are k of them) of c are in Fk 1. If anyone of them is not in 

Fk 1, c cannot be frequent according to the downward closure property, 

and is thus deleted from Ck.

The correctness of the candidate-gen() function is easy to show (see [11]). 

Here, we use an example to illustrate the working of the function.  

Example 3: Let the set of frequent itemsets at level 3 be 

F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}.

For simplicity, we use numbers to represent items. The join step (which 

generates candidates for level 4) will produce two candidate itemsets, {1, 2, 

3, 4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the 

second itemsets in F3 as their first and second items are the same respec-

tively. {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}.

After the pruning step, we have only: 

C4 = {{1, 2, 3, 4}} 

because {1, 4, 5} is not in F3 and thus {1, 3, 4, 5} cannot be frequent.  

Example 4: Let us see a complete running example of the Apriori algo-

rithm based on the transactions in Fig. 2.1. We use minsup = 30%.  

F1: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}

Note: the number after each frequent itemset is the support count of the 

itemset, i.e., the number of transactions containing the itemset. A mini-

mum support count of 3 is sufficient because the support of 3/7 is greater 

than 30%, where 7 is the total number of transactions.  



2.2 Apriori Algorithm      19 

C2: {{Beef, Cheese}, {Beef, Chicken}, {Beef, Clothes}, {Beef, Milk},  
 {Cheese, Chicken}, {Cheese, Clothes}, {Cheese, Milk},  
 {Chicken, Clothes}, {Chicken, Milk}, {Clothes, Milk}} 

F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,  
  {Chicken, Milk}:4, {Clothes, Milk}:3} 

C3: {{Chicken, Clothes, Milk}}

 Note: {Beef, Cheese, Chicken} is also produced in line 6 of Fig. 2.3. 

However, {Cheese, Chicken} is not in F2, and thus the itemset {Beef,
Cheese, Chicken} is not included in C3.

F3: {{Chicken, Clothes, Milk}:3}. 

Finally, some remarks about the Apriori algorithm are in order:  

Theoretically, this is an exponential algorithm. Let the number of items 

in I be m. The space of all itemsets is O(2m) because each item may or 

may not be in an itemset. However, the mining algorithm exploits the 

sparseness of the data and the high minimum support value to make the 

mining possible and efficient. The sparseness of the data in the context 

of market basket analysis means that the store sells a lot of items, but 

each shopper only purchases a few of them.  

The algorithm can scale up to large data sets as it does not load the en-

tire data into the memory. It only scans the data K times, where K is the 

size of the largest itemset. In practice, K is often small (e.g., < 10). This 

scale-up property is very important in practice because many real-world 

data sets are so large that they cannot be loaded into the main memory.  

The algorithm is based on level-wise search. It has the flexibility to stop 

at any level. This is useful in practice because in many applications, 

long frequent itemsets or rules are not needed as they are hard to use.  

As mentioned earlier, once a transaction set T, a minsup and a minconf 

are given, the set of frequent itemsets that can be found in T is uniquely 

determined. Any algorithm should find the same set of frequent item-

sets. This property about association rule mining does not hold for many 

other data mining tasks, e.g., classification or clustering, for which dif-

ferent algorithms may produce very different results.  

The main problem with association rule mining is that it often produces 

a huge number of itemsets (and rules), tens of thousands, or more, 

which makes it hard for the user to analyze them to find those useful 

ones. This is called the interestingness problem. Researchers have pro-

posed several methods to tackle this problem (see Bibliographic Notes). 

An efficient implementation of the Apriori algorithm involves sophisti-

cated data structures and programming techniques, which are beyond the 



20       2 Association Rules and Sequential Patterns 

scope of this book. Apart from the Apriori algorithm, there is a large num-

ber of other algorithms, e.g., FP-growth [220] and many others. 

2.2.2 Association Rule Generation 

In many applications, frequent itemsets are already useful and sufficient. 

Then, we do not need to generate association rules. In applications where 

rules are desired, we use frequent itemsets to generate all association rules.  

Compared with frequent itemset generation, rule generation is relatively 

simple. To generate rules for every frequent itemset f, we use all non-

empty subsets of f. For each such subset , we output a rule of the form   

(f ) ,  if 

,
).(

.
minconf

countf

countf
confidence (3)

where f.count (or (f ).count) is the support count of f (or (f )). The 

support of the rule is f.count/n, where n is the number of transactions in the 

transaction set T. All the support counts needed for confidence computa-

tion are available because if f is frequent, then any of its non-empty subsets 

is also frequent and its support count has been recorded in the mining 

process. Thus, no data scan is needed in rule generation.  

This exhaustive rule generation strategy is, however, inefficient. To de-

sign an efficient algorithm, we observe that the support count of f in the 

above confidence computation does not change as  changes. It follows 

that for a rule (f )  to hold, all rules of the form (f sub) sub

must also hold,  where sub is a non-empty subset of , because the support 

count of (f sub) must be less than or equal to the support count of (f ).

For example, given an itemset {A, B, C, D}, if the rule (A, B  C, D) holds, 

then the rules (A, B, C  D) and (A, B, D  C) must also hold. 

Thus, for a given frequent itemset f, if a rule with consequent  holds, 

then so do rules with consequents that are subsets of . This is similar to 

the downward closure property that, if an itemset is frequent, then so are 

all its subsets. Therefore, from the frequent itemset f, we first generate all 

rules with one item in the consequent. We then use the consequents of 

these rules and the function candidate-gen() (Fig. 2.3) to generate all pos-

sible consequents with two items that can appear in a rule, and so on. An 

algorithm using this idea is given in Fig. 2.4. Note that all 1-item conse-

quent rules (rules with one item in the consequent) are first generated in 

line 2 of the function genRules(). The confidence is computed using (3).   



2.2 Apriori Algorithm      21 

Example 5: We again use transactions in Fig. 2.1, minsup = 30% and min-

conf = 80%. The frequent itemsets are as follows (see Example 4):  

F1: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}
F2: {{Beef, Cheese}:3, {Beef, Chicken}:3, {Chicken, Clothes}:3,  
 {Chicken, Milk}:4, {Clothes, Milk}:3} 
F3: {{Chicken, Clothes, Milk}:3}.

We use only the itemset in F3 to generate rules (generating rules from each 

itemset in F2 can be done in the same way). The itemset in F3 generates the 

following possible 1-item consequent rules:  

Rule 1: Chicken, Clothes  Milk  [sup = 3/7, conf = 3/3] 

Rule 2:  Chicken, Milk  Clothes  [sup = 3/7, conf = 3/4] 

Rule 3:  Clothes, Milk   Chicken  [sup = 3/7, conf = 3/3]. 

Due to the minconf requirement, only Rule 1 and Rule 3 are output in line 

2 of the algorithm genRules(). Thus, H1 = {{Chicken}, {Milk}}. The function 

ap-genRules() is then called. Line 2 of ap-genRules() produces H2 =

{{Chicken, Milk}}. The following rule is then generated:  

Rule 4:  Clothes  Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Algorithm genRules(F) // F is the set of all frequent itemsets 

1 for each frequent k-itemset fk in F, k  2 do

2 output every 1-item consequent rule of fk with confidence minconf and 

support fk.count / n // n is the total number of transactions in T

3 H1 {consequents of all 1-item consequent rules derived from fk above}; 

4  ap-genRules(fk, H1);

5 endfor

Procedure ap-genRules(fk, Hm) // Hm is the set of m-item consequents 

1 if (k > m + 1) AND (Hm ) then

2 Hm+1  candidate-gen(Hm);

3 for each hm+1 in Hm+1 do

4 conf fk.count / (fk hm+1).count;

5 if (conf minconf) then

6 output the rule (fk hm+1) hm+1 with confidence = conf and 

support = fk.count / n; // n is the total number of transactions in T
7 else

8 delete hm+1 from Hm+1;

9 endfor

10 ap-genRules(fk, Hm+1);

11 endif

Fig. 2.4. The association rule generation algorithm 



22       2 Association Rules and Sequential Patterns 

Thus, three association rules are generated from the frequent itemset 

{Chicken, Clothes, Milk} in F3, namely Rule 1, Rule 3 and Rule 4.

2.3  Data Formats for Association Rule Mining 

So far, we have used only transaction data for mining association rules. 

Market basket data sets are naturally of this format. Text documents can be 

seen as transaction data as well. Each document is a transaction, and each 

distinctive word is an item. Duplicate words are removed.  

However, mining can also be performed on relational tables. We just 

need to convert a table data set to a transaction data set, which is fairly 

straightforward if each attribute in the table takes categorical values. We 

simply change each value to an attribute–value pair.

Example 6: The table data in Fig. 2.5(A) can be converted to the transac-

tion data in Fig. 2.5(B). Each attribute–value pair is considered an item.

Using only values is not sufficient in the transaction form because different 

attributes may have the same values. For example, without including at-

tribute names, value a’s for Attribute1 and Attribute2 are not distinguish-

able. After the conversion, Fig. 2.5(B) can be used in mining.

If an attribute takes numerical values, it becomes complex. We need to 

first discretize its value range into intervals, and treat each interval as a 

categorical value. For example, an attribute’s value range is from 1–100. 

We may want to divide it into 5 equal-sized intervals, 1–20, 21–40, 41–60, 

61–80, and 81–100. Each interval is then treated as a categorical value. 

Discretization can be done manually based on expert knowledge or auto-

matically. There are several existing algorithms [151, 501].  

A point to note is that for a table data set, the join step of the candidate 

generation function (Fig. 2.3) needs to be slightly modified in order to en-

sure that it does not join two itemsets to produce a candidate itemset con-

taining two items from the same attribute. 

 Clearly, we can also convert a transaction data set to a table data set us-

ing a binary representation and treating each item in I as an attribute. If a 

transaction contains an item, its attribute value is 1, and 0 otherwise.  

2.4 Mining with Multiple Minimum Supports

The key element that makes association rule mining practical is the minsup

threshold. It is used to prune the search space and to limit the number of 

frequent itemsets and rules generated. However, using only a single min-



2.4 Mining with Multiple Minimum Supports      23 

sup implicitly assumes that all items in the data are of the same nature 

and/or have similar frequencies in the database. This is often not the case 

in real-life applications. In many applications, some items appear very fre-

quently in the data, while some other items rarely appear. If the frequen-

cies of items vary a great deal, we will encounter two problems [344]:  

1. If the minsup is set too high, we will not find rules that involve infre-

quent items or rare items in the data.  

2. In order to find rules that involve both frequent and rare items, we have 

to set the minsup very low. However, this may cause combinatorial ex-

plosion and make mining impossible because those frequent items will 

be associated with one another in all possible ways.  

Let us use an example to illustrate the above problem with a very low min-

sup, which will actually introduce another problem.  

Example 7: In a supermarket transaction data set, in order to find rules in-

volving those infrequently purchased items such as FoodProcessor and 

CookingPan (they generate more profits per item), we need to set the min-

sup very low. Let us use only frequent itemsets in this example as they are 

generated first and rules are produced from them. They are also the source 

of all the problems. Now assume we set a very low minsup of 0.005%. We 

find the following meaningful frequent itemset: 

 {FoodProcessor, CookingPan}    [sup = 0.006%]. 

However, this low minsup may also cause the following two meaningless 

itemsets being discovered:  

f1:  {Bread, Cheese, Egg, Bagel, Milk, Sugar, Butter}   [sup = 0.007%], 

f2:  {Bread, Egg, Milk, CookingPan}   [sup = 0.006%]. 

Knowing that 0.007% of the customers buy the seven items in f1 together is 

useless because all these items are so frequently purchased in a supermar-

Attribute1 Attribute2 Atribute3 

a a x 

b n y 

(A) Table data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x) 

t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y) 

(B) Transaction data 

Fig. 2.5. From a table data set to a transaction data set 



24       2 Association Rules and Sequential Patterns 

ket. Worst still, they will almost certainly cause combinatorial explosion! 

For itemsets involving such items to be useful, their supports have to be 

much higher. Similarly, knowing that 0.006% of the customers buy the 

four items in f2 together is also meaningless because Bread, Egg and Milk

are purchased on almost every grocery shopping trip.  

This dilemma is called the rare item problem. Using a single minsup 

for the whole data set is inadequate because it cannot capture the inherent 

natures and/or frequency differences of items in the database. By the na-

tures of items we mean that some items, by nature, appear more frequently 

than others. For example, in a supermarket, people buy FoodProcessor and 

CookingPan much less frequently than Bread and Milk. The situation is the 

same for online stores. In general, those durable and/or expensive goods 

are bought less often, but each of them generates more profit. It is thus im-

portant to capture rules involving less frequent items. However, we must 

do so without allowing frequent items to produce too many meaningless 

rules with very low supports and cause combinatorial explosion [344]. 

One common solution to this problem is to partition the data into several 

smaller blocks (subsets), each of which contains only items of similar fre-

quencies. Mining is then done separately for each block using a different 

minsup. This approach is, however, not satisfactory because itemsets or 

rules that involve items across different blocks will not be found.

A better solution is to allow the user to specify multiple minimum sup-

ports, i.e., to specify a different minimum item support (MIS) to each 

item. Thus, different itemsets need to satisfy different minimum supports 

depending on what items are in the itemsets. This model thus enables us to 

achieve our objective of finding itemsets involving rare items without 

causing frequent items to generate too many meaningless itemsets. This 

method helps solve the problem of f1. To deal with the problem of f2, we 

prevent itemsets that contain both very frequent items and very rare items 

from being generated. A constraint will be introduced to realize this.

An interesting by-product of this extended model is that it enables the 

user to easily instruct the algorithm to generate only itemsets that contain 

certain items but not itemsets that contain only the other items. This can be 

done by setting the MIS values to more than 100% (e.g., 101%) for these 

other items. This capability is very useful in practice because in many ap-

plications the user is only interested in certain types of itemsets or rules. 

2.4.1 Extended Model 

To allow multiple minimum supports, the original model in Sect. 2.1 needs 

to be extended. In the extended model, the minimum support of a rule is 



2.4 Mining with Multiple Minimum Supports      25 

expressed in terms of minimum item supports (MIS) of the items that 

appear in the rule. That is, each item in the data can have a MIS value 

specified by the user. By providing different MIS values for different 

items, the user effectively expresses different support requirements for dif-

ferent rules. It seems that specifying a MIS value for each item is a diffi-

cult task. This is not so as we will see at the end of Sect. 2.4.2.  

Let MIS(i) be the MIS value of item i. The minimum support of a rule 

R is the lowest MIS value among the items in the rule. That is, a rule R,

 i1, i2, …, ik ik+1, …, ir,

satisfies its minimum support if the rule’s actual support in the data is 

greater than or equal to:

min(MIS(i1), MIS(i2), …, MIS(ir)).

Minimum item supports thus enable us to achieve the goal of having 

higher minimum supports for rules that involve only frequent items, and 

having lower minimum supports for rules that involve less frequent items.  

Example 8: Consider the set of items in a data set, {Bread, Shoes, 

Clothes}. The user-specified MIS values are as follows: 

MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%. 

The following rule doesn’t satisfy its minimum support: 

 Clothes  Bread  [sup = 0.15%, conf = 70%]. 

This is so because min(MIS(Bread), MIS(Clothes)) = 0.2%. The following 

rule satisfies its minimum support: 

 Clothes  Shoes  [sup = 0.15%, conf = 70%]. 

because min(MIS(Clothes), MIS(Shoes)) = 0.1%.  

As we explained earlier, the downward closure property holds the key 

to pruning in the Apriori algorithm. However, in the new model, if we use 

the Apriori algorithm to find all frequent itemsets, the downward closure 

property no longer holds. 

Example 9: Consider the four items 1, 2, 3 and 4 in a data set. Their 

minimum item supports are: 

 MIS(1) = 10%  MIS(2) = 20% MIS(3) = 5%  MIS(4) = 6%. 

If we find that itemset {1, 2} has a support of 9% at level 2, then it does not 

satisfy either MIS(1) or MIS(2). Using the Apriori algorithm, this itemset 

is discarded since it is not frequent. Then, the potentially frequent itemsets 

{1, 2, 3} and {1, 2, 4} will not be generated for level 3. Clearly, itemsets {1,



26       2 Association Rules and Sequential Patterns 

2, 3} and {1, 2, 4} may be frequent because MIS(3) is only 5% and MIS(4)

is 6%. It is thus wrong to discard {1, 2}. However, if we do not discard {1,

2}, the downward closure property is lost.   

Below, we present an algorithm to solve this problem. The essential idea 

is to sort the items according to their MIS values in ascending order to 

avoid the problem.  

Note that MIS values prevent low support itemsets involving only fre-

quent items from being generated because their individual MIS values are 

all high. To prevent very frequent items and very rare items from appear-

ing in the same itemset, we introduce the support difference constraint.

Let sup(i) be the actual support of item i in the data. For each itemset s,

the support difference constraint is as follows: 

maxi s{sup(i)} mini s{sup(i)} ,

where 0  1 is the user-specified maximum support difference, and it 

is the same for all itemsets. The constraint basically limits the difference 

between the largest and the smallest actual supports of items in itemset s to 

. This constraint can reduce the number of itemsets generated dramati-

cally, and it does not affect the downward closure property.  

2.4.2 Mining Algorithm 

The new algorithm generalizes the Apriori algorithm for finding frequent 

itemsets. We call the algorithm, MS-Apriori. When there is only one MIS 

value (for all items), it reduces to the Apriori algorithm.  

Like Apriori, MS-Apriori is also based on level-wise search. It generates 

all frequent itemsets by making multiple passes over the data. However, 

there is an exception in the second pass as we will see later.  

The key operation in the new algorithm is the sorting of the items in I in

ascending order of their MIS values. This order is fixed and used in all 

subsequent operations of the algorithm. The items in each itemset follow 

this order. For example, in Example 9 of the four items 1, 2, 3 and 4 and 

their given MIS values, the items are sorted as follows: 3, 4, 1, 2. This or-

der helps solve the problem identified above. 

Let Fk denote the set of frequent k-itemsets. Each itemset w is of the fol-

lowing form, {w[1], w[2], …, w[k]}, which consists of items, w[1], w[2], 

…, w[k], where MIS(w[1])  MIS(w[2])  …  MIS(w[k]). The algorithm 

MS-Apriori is given in Fig. 2.6. Line 1 performs the sorting on I according 

to the MIS value of each item (stored in MS). Line 2 makes the first pass 

over the data using the function init-pass(), which takes two arguments, the 



2.4 Mining with Multiple Minimum Supports      27 

data set T and the sorted items M, to produce the seeds L for generating 

candidate itemsets of length 2, i.e., C2. init-pass() has two steps:  

1. It first scans the data once to record the support count of each item.  

2. It then follows the sorted order to find the first item i in M that meets 

MIS(i). i is inserted into L. For each subsequent item j in M after i, if 

j.count/n  MIS(i), then j is also inserted into L, where j.count is the 

support count of j, and n is the total number of transactions in T.

Frequent 1-itemsets (F1) are obtained from L (line 3). It is easy to show 

that all frequent 1-itemsets are in F1.

Example 10: Let us follow Example 9 and the given MIS values for the 

four items. Assume our data set has 100 transactions (not limited to the 

four items). The first pass over the data gives us the following support 

counts: {3}.count = 6, {4}.count = 3, {1}.count = 9 and {2}.count = 25. Then,

L = {3, 1, 2}, and F1 = {{3}, {2}}.

Item 4 is not in L because 4.count/n < MIS(3) (= 5%), and {1} is not in F1

because 1.count / n < MIS(1) (= 10%).

For each subsequent pass (or data scan), say pass k, the algorithm per-

forms three operations.

Algorithm MS-Apriori(T, MS, ) // MS stores all MIS values

1 M sort(I, MS); // according to MIS(i)’s stored in MS

2 L  init-pass(M, T); // make the first pass over T

3 F1  {{l} | l L, l.count/n  MIS(l)};  // n is the size of T
4 for (k = 2; Fk 1 ; k++) do
5 if k = 2 then  
6 Ck  level2-candidate-gen(L, ) // k = 2

7 else Ck  MScandidate-gen(Fk 1, )
8 endif;
9 for each transaction t T do
10 for each candidate c Ck do   
11 if c is contained in t then // c is a subset of t

12  c.count++
13 if c – {c[1]} is contained in t then // c without the first item 

14  (c – {c[1]}).count++  
15 endfor
16 endfor
17 Fk  {c Ck | c.count/n MIS(c[1])} 
18 endfor
19 return F k Fk;

Fig. 2.6. The MS-Apriori algorithm 



28       2 Association Rules and Sequential Patterns 

1. The frequent itemsets in Fk 1 found in the (k–1)th pass are used to gener-

ate the candidates Ck using the MScandidate-gen() function (line 7). 

However, there is a special case, i.e., when k = 2 (line 6), for which the 

candidate generation function is different, i.e., level2-candidate-gen().  

2. It then scans the data and updates various support counts of the candi-

dates in Ck (line 9–16). For each candidate c, we need to update its sup-

port count (lines 11–12) and also the support count of c without the first 

item (lines 13–14), i.e., c – {c[1]}, which is used in rule generation and 

will be discussed in Sect. 2.4.3. If rule generation is not required, lines 

13 and 14 can be deleted.  

3. The frequent itemsets (Fk) for the pass are identified in line 17.

We present candidate generation functions level2-candidate-gen() and 

MScandidate-gen() below. 

Level2-candidate-gen function: It takes an argument L, and returns a su-

perset of the set of all frequent 2-itemsets. The algorithm is given in Fig. 

2.7. Note that in line 5, we use |sup(h) sup(l)|  because sup(l) may not 

be lower than sup(h), although MIS(l)  MIS(h).

Example 11: Let us continue with Example 10. We set  = 10%. Recall 

the MIS values of the four items are (in Example 9): 

 MIS(1) = 10%  MIS(2) = 20% 

 MIS(3) = 5%  MIS(4) = 6%. 

The level2-candidate-gen() function in Fig. 2.7 produces   

 C2 = {{3, 1}}.

{1, 2} is not a candidate because the support count of item 1 is only 9 (or 

9%), less than MIS(1) (= 10%). Hence, {1, 2} cannot be frequent. {3, 2} is

not a candidate because sup(3) = 6% and sup(2) = 25% and their difference 

is greater than  = 10%  

Note that we must use L rather than F1 because F1 does not contain those 

items that may satisfy the MIS of an earlier item (in the sorted order) but 

not the MIS of itself, e.g., item 1 in the above example. Using L, the prob-

lem discussed in Sect. 2.4.1 is solved for C2.

MScandidate-gen function: The algorithm is given in Fig. 2.8, which is 

similar to the candidate-gen function in the Apriori algorithm. It also has 

two steps, the join step and the pruning step. The join step (lines 2–6) is 

the same as that in the candidate-gen() function. The pruning step (lines 8–

12) is, however, different.  

For each (k-1)-subset s of c, if s is not in Fk 1, c can be deleted from Ck.

However, there is an exception, which is when s does not include c[1] 



2.4 Mining with Multiple Minimum Supports      29 

(there is only one such s). That is, the first item of c, which has the lowest 

MIS value, is not in s. Even if s is not in Fk 1, we cannot delete c because 

we cannot be sure that s does not satisfy MIS(c[1]), although we know that 

it does not satisfy MIS(c[2]), unless MIS(c[2]) = MIS(c[1]) (line 9). 

Example 12: Let F3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4, 

6}, {2, 3, 5}}. Items in each itemset are in the sorted order. The join step 

produces (we ignore the support difference constraint here) 

 {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 4, 5, 6}. 

The pruning step deletes {1, 4, 5, 6} because {1, 5, 6} is not in F3. We are 

then left with C4 = {{1, 2, 3, 5}, {1, 3, 4, 5}}. {1, 3, 4, 5} is not deleted al-

though {3, 4, 5} is not in F3 because the minimum support of {3, 4, 5} is 

MIS(3), which may be higher than MIS(1). Although {3, 4, 5} does not sat-

isfy MIS(3), we cannot be sure that it does not satisfy MIS(1). However, if 

MIS(3) = MIS(1), then {1, 3, 4, 5} can also be deleted.

Function level2-candidate-gen(L, )

1 C2 ; // initialize the set of candidates 

2 for each item l in L in the same order do

3 if l.count/n  MIS(l) then

4 for each item h in L that is after l do

5 if h.count/n  MIS(l) and |sup(h) sup(l)| then

6 C2 C2  {{l, h}};  // insert the candidate {l, h} into C2

Fig. 2.7. The level2-candidate-gen function 

Function MScandidate-gen(Fk 1, )

1 Ck ;  // initialize the set of candidates 

2 forall f1, f2 Fk // find all pairs of frequent itemsets 

3 with f1 = {i1, … , ik 2, ik 1}  // that differ only in the last item  

4 and  f2 = {i1, … , ik 2, i’k 1}

5 and ik-1 < i’k 1 and |sup(ik-1) sup(i’k 1)| do   

6 c  {i1, …, ik 1, i’k 1};  // join the two itemsets f1 and f2
7 Ck Ck  {c};  // insert the candidate itemset c into Ck

8 for each (k 1)-subset s of c do 

9 if (c[1] s) or (MIS(c[2]) = MIS(c[1])) then

10 if (s Fk 1) then

11 delete c from Ck; // delete c from the set of candidates 

12 endfor

13 endfor

14 return Ck; // return the generated candidates 

Fig. 2.8. The MScandidate-gen function 



30       2 Association Rules and Sequential Patterns 

The problem discussed in Sect. 2.4.1 is solved for Ck (k > 2) because, 

due to the sorting, we do not need to extend a frequent (k 1)-itemset with 

any item that has a lower MIS value. Let us see a complete example.  

Example 13: Given the following seven transactions, 

Beef, Bread 
 Bread, Clothes 

Bread, Clothes, Milk 
Cheese, Boots 
Beef, Bread, Cheese, Shoes 
Beef, Bread, Cheese, Milk 
Bread, Milk, Clothes 

and MIS(Milk) = 50%, MIS(Bread) = 70%, and 25% for all other items. 

Again, the support difference constraint is not used. The following fre-

quent itemsets are produced: 

F1 = {{Beef}, {Cheese}, {Clothes}, {Bread}}
F2 = {{Beef, Cheese}, {Beef, Bread}, {Cheese, Bread}  

{Clothes, Bread}, {Clothes, Milk}} 

F3 = {{Beef, Cheese, Bread}, {Clothes, Milk, Bread}}. 

To conclude this sub-section, let us further discuss two important issues: 

1. Specify MIS values for items: This is usually done in two ways:  

Assign a MIS value to each item according to its actual sup-

port/frequency in the data set T.  For example, if the actual support of 

item i in T is sup(i), then the MIS value for i may be computed with 

sup(i), where  is a parameter (0  1) and is the same for all 

items in T.

Group items into clusters (or blocks). Items in each cluster have simi-

lar frequencies. All items in the same cluster are given the same MIS 

value. We should note that in the extended model frequent itemsets 

involving items from different clusters will be found.   

2. Generate itemsets that must contain certain items: As mentioned earlier, 

the extended model enables the user to instruct the algorithm to generate 

itemsets that must contain certain items, or not to generate any itemsets 

consisting of only the other items. Let us see an example.  

Example 14: Given the data set in Example 13, if we want to generate 

frequent itemsets that must contain at least one item in {Boots, Bread, 

Cheese, Milk, Shoes}, or not to generate itemsets involving only Beef

and/or Clothes, we can simply set 

 MIS(Beef) = 101%, and MIS(Clothes) = 101% 



2.4 Mining with Multiple Minimum Supports      31 

Then the algorithm will not generate the itemsets, {Beef}, {Clothes}

and {Beef, Clothes}. However, it will still generate such frequent item-

sets as {Cheese, Beef} and {Cheese, Bread, Beef}.

In many applications, this feature comes quite handy because the user 

is often only interested in certain types of itemsets or rules.  

2.4.3  Rule Generation 

Association rules are generated using frequent itemsets. In the case of a 

single minsup, if f is a frequent itemset and fsub is a subset of f, then fsub
must also be a frequent itemset. All their support counts are computed and 

recorded by the Apriori algorithm. Then, the confidence of each possible 

rule can be easily calculated without seeing the data again.       

However, in the case of MS-Apriori, if we only record the support count 

of each frequent itemset, it is not sufficient. Let us see why.  

Example 15: Recall in Example 8, we have 

MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%. 

If the actual support for the itemset {Clothes, Bread} is 0.15%, and for the 

itemset {Shoes, Clothes, Bread} is 0.12%, according to MS-Apriori, 

{Clothes, Bread} is not a frequent itemset since its support is less than 

MIS(Clothes). However, {Shoes, Clothes, Bread} is a frequent itemset as 

its actual support is greater than

 min(MIS(Shoes), MIS(Clothes), MIS(Bread)) = MIS(Shoes)). 

We now have a problem in computing the confidence of the rule,  

Clothes, Bread Shoes 

because the itemset {Clothes, Bread} is not a frequent itemset and thus its 

support count is not recorded. In fact, we may not be able to compute the 

confidences of the following rules either: 

Clothes Shoes, Bread 

Bread Shoes, Clothes 

because {Clothes} and {Bread} may not be frequent.  

Lemma: The above problem may occur only when the item that has the 

lowest MIS value in the itemset is in the consequent of the rule (which 

may have multiple items). We call this problem the head-item problem.

Proof by contradiction: Let f be a frequent itemset, and a f be the item 

with the lowest MIS value in f (a is called the head item). Thus, f uses 



32       2 Association Rules and Sequential Patterns 

MIS(a) as its minsup. We want to form a rule, X Y, where X, Y f, X

Y = f and X Y = . Our examples above already show that the head-item 

problem may occur when a Y. Now assume that the problem can also 

occur when a X. Since a X and X f, a must have the lowest MIS 

value in X and X must be a frequent itemset, which is ensured by the MS-

Apriori algorithm. Hence, the support count of X is recorded. Since f is a 

frequent itemset and its support count is also recorded, then we can com-

pute the confidence of X Y. This contradicts our assumption.  

The lemma indicates that we need to record the support count of f – {a}.

This is achieved by lines 13–14 in MS-Apriori (Fig. 2.6). All problems in 

Example 15 are solved. A similar rule generation function as genRules() in 

Apriori can be designed to generate rules with multiple minimum supports.  

2.5 Mining Class Association Rules 

The mining models studied so far do not use any targets. That is, any item 

can appear as a consequent or condition of a rule. However, in some appli-

cations, the user is interested in only rules with some fixed target items on 

the right-hand side. For example, the user has a collection of text docu-

ments from some topics (target items), and he/she wants to know what 

words are correlated with each topic. In [352], a data mining system based 

entirely on such rules (called class association rules) is reported, which is 

in production use in Motorola for many different applications. In the Web 

environment, class association rules are also useful because many types of 

Web data are in the form of transactions, e.g., search queries issued by us-

ers, and pages clicked by visitors. There are often target items as well, e.g., 

advertisements. Web sites want to know how user activities are associated 

with advertisements that they may like to view. This touches the issue of 

classification or prediction, which we will study in the next chapter. 

2.5.1 Problem Definition 

Let T be a transaction data set consisting of n transactions. Each transac-

tion is labeled with a class y. Let I be the set of all items in T, Y be the set 

of all class labels (or target items) and I  Y = . A class association 

rule (CAR) is an implication of the form  

 X y, where X I, and y Y.

The definitions of support and confidence are the same as those for nor-



2.5 Mining Class Association Rules      33 

mal association rules. In general, a class association rule is different from a 

normal association rule in two ways: 

1. The consequent of a CAR has only a single item, while the consequent 

of a normal association rule can have any number of items.  

2. The consequent y of a CAR can only be from the class label set Y, i.e., y

Y. No item from I can appear as the consequent, and no class label can 

appear as a rule condition. In contrast, a normal association rule can 

have any item as a condition or a consequent.

Objective: The problem of mining CARs is to generate the complete set of 

CARs that satisfies the user-specified minimum support (minsup) and 

minimum confidence (minconf) constraints.  

Example 16: Figure 2.9 shows a data set which has seven text documents. 

Each document is a transaction and consists of a set of keywords. Each 

transaction is also labeled with a topic class (education or sport).

I = {Student, Teach, School, City, Game, Baseball, Basketball, Team, 

Coach, Player, Spectator}

Y = {Education, Sport}. 

 Transactions  Class 

doc 1:  Student, Teach, School  : Education 
doc 2:  Student, School  : Education   
doc 3:  Teach, School, City, Game  : Education 
doc 4:  Baseball, Basketball : Sport 
doc 5:  Basketball, Player, Spectator   : Sport 
doc 6:  Baseball, Coach, Game, Team  : Sport 
doc 7:  Basketball, Team, City, Game  : Sport 

Fig. 2.9. An example of a data set for mining class association rules 

Let minsup = 20% and minconf = 60%. The following are two examples of 

class association rules: 

Student, School  Education [sup= 2/7, conf = 2/2] 

Game  Sport [sup= 2/7, conf = 2/3]. 

A question that one may ask is: can we mine the data by simply using the 

Apriori algorithm and then perform a post-processing of the resulting rules 

to select only those class association rules? In principle, the answer is yes 

because CARs are a special type of association rules. However, in practice 

this is often difficult or even impossible because of combinatorial explo-

sion, i.e., the number of rules generated in this way can be huge.   



34       2 Association Rules and Sequential Patterns 

2.5.2 Mining Algorithm 

Unlike normal association rules, CARs can be mined directly in a single 

step. The key operation is to find all ruleitems that have support above 

minsup. A ruleitem is of the form: 

(condset, y),

where condset I is a set of items, and y Y is a class label. The support 

count of a condset (called condsupCount) is the number of transactions in 

T that contain the condset. The support count of a ruleitem (called rule-

supCount) is the number of transactions in T that contain the condset and 

are labeled with class y. Each ruleitem basically represents a rule:     

condset y,

whose support is (rulesupCount / n), where n is the total number of trans-

actions in T, and whose confidence is (rulesupCount / condsupCount).

Ruleitems that satisfy the minsup are called frequent ruleitems, while 

the rest are called infrequent ruleitems. For example, ({Student, School}, 

Education) is a ruleitem in T of Fig. 2.9. The support count of the condset 

{Student, School} is 2, and the support count of the ruleitem is also 2. Then 

the support of the ruleitem is 2/7 (= 28.6%), and the confidence of the rule-

item is 100%. If minsup = 10%, then the ruleitem satisfies the minsup 

threshold. We say that it is frequent. If minconf = 80%, then the ruleitem 

satisfies the minconf threshold. We say that the ruleitem is confident. We 

thus have the class association rule: 

Student, School  Education [sup= 2/7, conf = 2/2]. 

The rule generation algorithm, called CAR-Apriori, is given in Fig. 

2.10, which is based on the Apriori algorithm. Like the Apriori algorithm, 

CAR-Apriori generates all the frequent ruleitems by making multiple 

passes over the data. In the first pass, it computes the support count of each 

1-ruleitem (containing only one item in its condset) (line 1). The set of all 

1-candidate ruleitems considered is:  

C1 = {({i}, y) | i I, and y Y},

which basically associates each item in I (or in the transaction data set T)

with every class label. Line 2 determines whether the candidate 1-

ruleitems are frequent. From frequent 1-ruleitems, we generate 1-condition 

CARs (rules with only one condition) (line 3). In a subsequent pass, say k,

it starts with the seed set of (k 1)-ruleitems found to be frequent in the 

(k 1)-th pass, and uses this seed set to generate new possibly frequent k-

ruleitems, called candidate k-ruleitems (Ck in line 5). The actual support 



2.5 Mining Class Association Rules      35 

counts, both condsupCount and rulesupCount, are updated during the scan 

of the data (lines 6–13) for each candidate k-ruleitem. At the end of the 

data scan, it determines which of the candidate k-ruleitems in Ck are actu-

ally frequent (line 14). From the frequent k-ruleitems, line 15 generates k-

condition CARs (class association rules with k conditions).  

One interesting note about ruleitem generation is that if a ruleitem/rule 

has a confidence of 100%, then extending the ruleitem with more condi-

tions (adding items to its condset) will also result in rules with 100% con-

fidence although their supports may drop with additional items. In some 

applications, we may consider these subsequent rules redundant because 

additional conditions do not provide any more information. Then, we 

should not extend such ruleitems in candidate generation for the next level, 

which can reduce the number of generated rules substantially. If desired, 

redundancy handling can be added in the CAR-Apriori algorithm easily.  

The CARcandidate-gen() function is very similar to the candidate-gen() 

function in the Apriori algorithm, and it is thus omitted. The only differ-

ence is that in CARcandidate-gen() ruleitems with the same class are 

joined by joining their condsets. 

Example 17: Let us work on a complete example using our data in Fig. 

2.9. We set minsup = 15%, and minconf = 70%  

F1:    { ({School}, Education):(3, 3),  ({Student}, Education):(2, 2), 
({Teach}, Education):(2, 2),  ({Baseball}, Sport):(2, 2), 

Algorithm CAR-Apriori(T)
1 C1  init-pass(T); // the first pass over T
2 F1  {f | f C1, f. rulesupCount / n minsup};
3 CAR1  {f | f F1, f.rulesupCount / f.condsupCount minconf};
4 for (k = 2; Fk 1 ; k++) do
5 Ck  CARcandidate-gen(Fk 1);
6 for each transaction t T do
7 for each candidate c Ck do    
8 if c.condset is contained in t then // c is a subset of t
9 c.condsupCount++;
10 if t.class = c.class then  
11 c.rulesupCount++
12 endfor
13 end-for
14 Fk  {c Ck | c.rulesupCount / n minsup};
15 CARk  {f | f Fk, f.rulesupCount / f.condsupCount minconf};
16 endfor
17 return CAR k CARk;

Fig. 2.10. The CAR-Apriori algorithm 



36       2 Association Rules and Sequential Patterns 

  ({Basketball}, Sport):(3, 3), ({Game}, Sport):(3, 2),  
  ({Team}, Sport):(2, 2)} 

Note: The two numbers within the parentheses after each ruleitem are its 

condSupCount and ruleSupCount respectively. 

CAR1: School  Education [sup = 3/7, conf = 3/3] 

 Student  Education [sup = 2/7, conf = 2/2] 

 Teach  Education [sup = 2/7, conf = 2/2] 

 Baseball  Sport [sup = 2/7, conf = 2/2] 

 Basketball  Sport [sup = 3/7, conf = 3/3] 

 Game  Sport [sup = 2/7, conf = 2/3]  

 Team  Sport [sup = 2/7, conf = 2/2]  

Note: We do not deal with rule redundancy in this example.   

C2: { ({School, Student}, Education),  ({School, Teach}, Education),  
  ({Student, Teach}, Education),  ({Baseball, Basketball}, Sport), 
  ({Baseball, Game}, Sport), ({Baseball, Team}, Sport),  

  ({Basketball, Game}, Sport),  ({Basketball, Team}, Sport), 
  ({Game, Team}, Sport)} 

F2: { ({School, Student}, Education):(2, 2),   
({School, Teach}, Education):(2, 2), ({Game, Team}, Sport):(2, 2)} 

CAR2: School, Student  Education [sup = 2/7, conf = 2/2] 

 School, Teach  Education [sup = 2/7, conf = 2/2] 

 Game, Team  Sport [sup = 2/7, conf = 2/2] 

We note that for many applications involving target items, the data sets 

used are relational tables. They need to be converted to transaction forms 

before mining. We can use the method in Sect. 2.3 for the purpose.  

Example 18: In Fig. 2.11(A), the data set has three data attributes and a 

class attribute with two possible values, positive and negative. It is con-

verted to the transaction data in Fig. 2.11(B). Notice that for each class, we 

only use its original value. There is no need to attach the attribute “Class”

Attribute1 Attribute2 Atribute3 Class 

a a x positive 

b n y negative 

(A) Table data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x)  : Positive 

t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y)  : negative 

(B) Transaction data 

Fig. 2.11. Converting a table data set (A) to a transaction data set (B)  



2.6 Basic Concepts of Sequential Patterns      37 

because there is no ambiguity. As discussed in Sect. 2.3, for each numeric 

attribute, its value range needs to be discretized into intervals either manu-

ally or automatically before conversion and rule mining. There are many 

discretization algorithms. Interested readers are referred to [151]. 

2.5.3 Mining with Multiple Minimum Supports 

The concept of mining with multiple minimum supports discussed in Sect. 

2.4 can be incorporated in class association rule mining in two ways: 

1. Multiple minimum class supports: The user can specify different 

minimum supports for different classes. For example, the user has a data 

set with two classes, Yes and No. Based on the application requirement, 

he/she may want all rules of class Yes to have the minimum support of 

5% and all rules of class No to have the minimum support of 20%.  

2. Multiple minimum item supports: The user can specify a minimum 

item support for every item (either a class item/label or a non-class 

item). This is more general and is similar to normal association rule 

mining discussed in Sect. 2.4.

For both approaches, similar mining algorithms to that given in Sect. 2.4 

can be devised. The support difference constraint in Sect. 2.4.1 can be in-

corporated as well. Like normal association rule mining with multiple 

minimum supports, by setting minimum class and/or item supports to more 

than 100% for some items, the user effectively instructs the algorithm not 

to generate rules involving only these items.  

Finally, although we have discussed only multiple minimum supports so 

far, we can easily use different minimum confidences for different classes 

as well, which provides an additional flexibility in applications.  

2.6 Basic Concepts of Sequential Patterns  

Association rule mining does not consider the order of transactions. How-

ever, in many applications such orderings are significant. For example, in 

market basket analysis, it is interesting to know whether people buy some 

items in sequence, e.g., buying bed first and then buying bed sheets some 

time later. In Web usage mining, it is useful to find navigational patterns 

in a Web site from sequences of page visits of users (see Chap. 12). In text 

mining, considering the ordering of words in a sentence is vital for finding 

linguistic or language patterns (see Chap. 11). For these applications, asso-

ciation rules will not be appropriate. Sequential patterns are needed. Be-



38       2 Association Rules and Sequential Patterns 

low, we define the problem of mining sequential patterns and introduce the 

main concepts involved.  

Let I = {i1, i2, …, im} be a set of items. A sequence is an ordered list of 

itemsets. Recall an itemset X is a non-empty set of items X I. We denote 

a sequence s by a1a2…ar , where ai is an itemset, which is also called an 

element of s.  We denote an element (or an itemset) of a sequence by {x1,

x2, …, xk}, where xj I is an item. We assume without loss of generality 

that items in an element of a sequence are in lexicographic order. An item 

can occur only once in an element of a sequence, but can occur multiple 

times in different elements. The size of a sequence is the number of ele-

ments (or itemsets) in the sequence. The length of a sequence is the num-

ber of items in the sequence. A sequence of length k is called a k-sequence.

If an item occurs multiple times in different elements of a sequence, each 

occurrence contributes to the value of k. A sequence s1 = a1a2…ar  is a 

subsequence of another sequence s2 = b1b2…bv , or s2 is a supersequence

of s1, if there exist integers 1 j1 < j2 < … < jr 1 < jr v such that a1  bj1
,

a2  bj2
, …, ar  bjr

. We also say that s2 contains s1.

Example 19: Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The sequence {3}{4, 5}{8} is

contained in (or is a subsequence of) {6} {3, 7}{9}{4, 5, 8}{3, 8}  because {3}

 {3, 7}, {4, 5}  {4, 5, 8}, and {8}  {3, 8}. However, {3}{8} is not con-

tained in {3, 8}  or vice versa. The size of the sequence {3}{4, 5}{8} is 3,

and the length of the sequence is 4.

Objective: Given a set S of input data sequences (or sequence database),

the problem of mining sequential patterns is to find all sequences that 

have a user-specified minimum support. Each such sequence is called a

frequent sequence, or a sequential pattern. The support for a se-

quence is the fraction of total data sequences in S that contains this se-

quence.

Example 20: We use the market basket analysis as an example. Each se-

quence in this context represents an ordered list of transactions of a par-

ticular customer. A transaction is a set of items that the customer pur-

chased at a time (called the transaction time). Then transactions in the 

sequence are ordered by increasing transaction time. Table 2.1 shows a 

transaction database which is already sorted according to customer ID (the 

major key) and transaction time (the minor key). Table 2.2 gives the data 

sequences (also called customer sequences). Table 2.3 gives the output 

sequential patterns with the minimum support of 25%, i.e., two customers. 



2.7 Mining Sequential Patterns Based on GSP      39 

Table 2.1. A set of transactions sorted by customer ID and transaction time 

Customer ID Transaction Time Transaction (items bought) 

1 July 20, 2005 30
1 July 25, 2005 90

2 July 9, 2005 10, 20 
2 July 14, 2005 30
2 July 20, 2005 10, 40, 60, 70 

3 July 25, 2005 30, 50, 70, 80 

4 July 25, 2005 30
4 July 29, 2005 30, 40, 70, 80 
4 August 2, 2005 90

5 July 12, 2005 90

Table 2.2. The sequence database produced from the transactions in Table 2.1. 

Customer ID Data Sequence 

1 {30} {90}

2 {10, 20} {30} {10, 40, 60, 70}

3 {30, 50, 70, 80}

4 {30} {30, 40, 70, 80} {90}

5 {90}

Table 2.3. The final output sequential patterns 

Sequential Patterns with Support  25% 

1-sequences {30} , {40} , {70} , {80} , {90}

2-sequences {30} {40} , {30} {70} , {30}, {90} , {30, 70} ,

{30, 80} , {40, 70} , {70, 80}

3-sequences {30} {40, 70} , {30, 70, 80}

2.7 Mining Sequential Patterns Based on GSP 

This section describes two algorithms for mining sequential patterns based 

on the GSP algorithm in [500]: the original GSP, which uses a single mini-

mum support, and MS-GSP, which uses multiple minimum supports.  

2.7.1 GSP Algorithm 

GSP works in almost the same way as the Apriori algorithm. We still use 

Fk to store the set of all frequent k-sequences, and Ck to store the set of all 



40       2 Association Rules and Sequential Patterns 

candidate k-sequences. The algorithm is given in Fig. 2.12. The main dif-

ference is in the candidate generation, candidate-gen-SPM(), which is 

given in Fig. 2.13. We use an example to illustrate the function.  

Example 21:  Table 2.4 shows F3, and C4 after the join and prune steps. In 

the join step, the sequence {1, 2}{4}  joins with {2}{4, 5}  to produce {1,

2}{4, 5} , and joins with {2}{4}{6}  to produce {1, 2}{4} {6} . The other se-

quences cannot be joined. For instance, {1}{4, 5}  does not join with any 

sequence since there is no sequence of the form {4, 5}{x}  or {4, 5, x} . In 

the prune step, {1, 2}{4} {6}  is removed since {1}{4} {6}  is not in F3.

Algorithm GSP(S)
1 C1  init-pass(S); // the first pass over S
2 F1  { {f} | f C1, f.count/n minsup};  // n is the number of sequences in S

3 for (k = 2; Fk 1 ; k++) do // subsequent passes over S
4 Ck  candidate-gen-SPM(Fk 1);
5 for each data sequence s S do // scan the data once 
6 for each candidate c Ck do    
7 if c is contained in s then
8 c.count++;  // increment the support count 
9 endfor
10 endfor
11 Fk  {c Ck | c.count/n minsup}
12 endfor
13 return k Fk;

Fig. 2.12. The GSP Algorithm for generating sequential patterns 

Function candidate-gen-SPM(Fk 1)  // SPM: Sequential Pattern Mining 

1. Join step. Candidate sequences are generated by joining Fk 1 with Fk 1. A se-

quence s1 joins with s2 if the subsequence obtained by dropping the first item 

of s1 is the same as the subsequence obtained by dropping the last item of s2.

The candidate sequence generated by joining s1 with s2 is the sequence s1 ex-

tended with the last item in s2. There are two cases:  

the added item forms a separate element if it was a separate element in s2,

and is appended at the end of s1 in the merged sequence, and    

the added item is part of the last element of s1 in the merged sequence oth-

erwise.

When joining F1 with F1, we need to add the item in s2 both as part of an 

itemset and as a separate element. That is, joining {x}  with {y}  gives us 

both {x, y}  and {x}{y} . Note that x and y in {x, y} are ordered.  

2. Prune step. A candidate sequence is pruned if any one of its (k 1)-

subsequences is infrequent (without minimum support).  

Fig. 2.13. The candidate-gen-SPM function  



2.7 Mining Sequential Patterns Based on GSP      41 

Table 2.4. Candidate generation: an example 

Candidate 4-sequences Frequent 

3-sequences after joining after pruning

{1, 2} {4} {1, 2} {4, 5} {1, 2} {4, 5}

{1, 2} {5} {1, 2} {4} {6}

{1} {4, 5}

{1, 4} {6}

{2} {4, 5}

{2} {4} {6}

2.7.2 Mining with Multiple Minimum Supports 

As in association rule mining, using a single minimum support in sequen-

tial pattern mining is also a limitation for many applications because some 

items appear very frequently in the data, while some others appear rarely.  

Example 22: One of the Web mining tasks is the mining of comparative 

sentences such as “the picture quality of camera X is better than that of 

camera Y.” from product reviews, forum postings and blogs (see Chap. 

11). Such a sentence usually contains a comparative indicator word such as 

better in the example. We want to discover linguistic patterns involving a 

set of given comparative indicators, e.g., better, more, less, ahead, win, 

superior, etc. Some of these indicators (e.g., more and better) appear very 

frequently in natural language sentences, while some others (e.g., win and 

ahead) appear rarely. In order to find patterns that contain such rare indi-

cators, we have to use a very low minsup. However, this causes patterns 

involving frequent indicators to generate a huge number of spurious pat-

terns. Moreover, we need a way to tell the algorithm that we only want pat-

terns that contain at least one comparative indicator. Using GSP with a 

single minsup is no longer appropriate. The multiple minimum supports 

model solves both problems nicely.  

We again use the concept of minimum item supports (MIS). The user 

is allowed to assign each item a MIS value. By providing different MIS 

values for different items, the user essentially expresses different support 

requirements for different sequential patterns. To ease the task of specify-

ing many MIS values by the user, the same strategies as those for mining 

association rules can also be applied here (see Sect. 2.4.2).  

Let MIS(i) be the MIS value of item i. The minimum support of a se-

quential pattern P is the lowest MIS value among the items in the pattern. 

Let the set of items in P be: i1, i2, …, ir. The minimum support for P is:  



42       2 Association Rules and Sequential Patterns 

 minsup(P) = min(MIS(i1), MIS(i2), …, MIS(ir)).

The new algorithm, called MS-GSP, is given in Fig. 2.14. It generalizes 

the GSP algorithm in Fig. 2.12. Like GSP, MS-GSP is also based on level-

wise search. Line 1 sorts the items in ascending order according to their 

MIS values stored in MS. Line 2 makes the first pass over the sequence 

data using the function init-pass(), which performs the same function as 

that in MS-Apriori to produce the seeds set L for generating the set of can-

didate sequences of length 2, i.e., C2. Frequent 1-sequences (F1) are ob-

tained from L (line 3).

For each subsequent pass, the algorithm works similarly to MS-Apriori. 

The function level2-candidate-gen-SPM() can be designed based on 

level2-candidate-gen in MS-Apriori and the join step in Fig. 2.13. MScan-

didate-gen-SPM() is, however, complex, which we will discuss shortly.  

In line 13, c.minMISItem gives the item that has the lowest MIS value in 

the candidate sequence c. Unlike that in MS-Apriori, where the first item 

in each itemset has the lowest MIS value, in sequential pattern mining the 

item with the lowest MIS value may appear anywhere in a sequence. Simi-

lar to those in MS-Apriori, lines 13 and 14 are used to ensure that all se-

quential rules can be generated after MS-GSP without scanning the origi-

nal data. Note that in traditional sequential pattern mining, sequential rules 

are not defined. We will define several types in Sect. 2.9. 

Algorithm MS-GSP(S, MS) // MS stores all MIS values

1 M sort(I, MS); // according to MIS(i)’s stored in MS

2 L  init-pass(M, S); // make the first pass over S

3 F1  { {l}  | l L, l.count/n  MIS(l)};  // n is the size of S
4 for (k = 2; Fk 1 ; k++) do
5  if k = 2 then  
6 Ck  level2-candidate-gen-SPM(L)
7 else Ck  MScandidate-gen-SPM(Fk 1)
8 endif
9 for each data sequence s S do
10 for each candidate c Ck do   
11 if c is contained in s then
12  c.count++
13 if c’ is contained in s, where c’ is c after an occurrence of 

c.minMISItem is removed from c then
14  c.rest.count++ // c.rest: c without c.minMISItem
15 endfor
16 endfor
17 Fk  {c Ck | c.count/n MIS(c.minMISItem)}
18 endfor
19 return F k Fk;

Fig. 2.14. The MS-GSP algorithm 



2.7 Mining Sequential Patterns Based on GSP      43 

Let us now discuss MScandidate-gen-SPM(). In MS-Apriori, the order-

ing of items is not important and thus we put the item with the lowest MIS 

value in each itemset as the first item of the itemset, which simplifies the 

join step. However, for sequential pattern mining, we cannot artificially 

put the item with the lowest MIS value as the first item in a sequence be-

cause the ordering of items is significant. This causes problems for joining. 

Example 23: Assume we have a sequence s1 = {1, 2}{4}  in F3, from 

which we want to generate candidate sequences for the next level. Suppose 

that item 1 has the lowest MIS value in s1. We use the candidate generation 

function in Fig. 2.13. Assume also that the sequence s2 = {2}{4, 5}  is not 

in F3 because its minimum support is not satisfied. Then we will not gen-

erate the candidate {1, 2}{4, 5} . However, {1, 2}{4, 5}  can be frequent be-

cause items 2, 4, and 5 may have higher MIS values than item 1.  

To deal with this problem, let us make an observation. The problem 

only occurs when the first item in the sequence s1 or the last item in the se-

quence s2 is the only item with the lowest MIS value, i.e., no other item in 

s1 (or s2) has the same lowest MIS value. If the item (say x) with the lowest 

MIS value is not the first item in s1, then s2 must contain x, and the candi-

date generation function in Fig. 2.13 will still be applicable. The same rea-

soning goes for the last item of s2. Thus, we only need special treatment for 

these two cases.  

Let us see how to deal with the first case, i.e., the first item is the only 

item with the lowest MIS value. We use an example to develop the idea. 

Assume we have the frequent 3-sequence of s1 = {1, 2}{4} . Based on the 

algorithm in Fig. 2.13, s1 may be extended to generate two possible candi-

dates using {2}{4}{x}  and {2}{4, x}

c1 = {1, 2}{4}{x}   and c2 = {1, 2}{4, x} ,

where x is an item. However, {2}{4}{x}  and {2}{4, x}  may not be frequent 

because items 2, 4, and x may have higher MIS values than item 1,  but we 

still need to generate c1 and c2 because they can be frequent. A different 

join strategy is thus needed.  

We observe that for c1 to be frequent, the subsequence s2 = {1}{4}{x}

must be frequent. Then, we can use s1 and s2 to generate c1. c2 can be gen-

erated in a similar manner with s2 = {1}{4, x} . s2 is basically the subse-

quence of c1 (or c2) without the second item. Here we assume that the MIS 

value of x is higher than item 1. Otherwise, it falls into the second case. 

Let us see the same problem for the case where the last item has the 

only lowest MIS value. Again, we use an example to illustrate. Assume we 

have the frequent 3-sequence s2 = {3, 5}{1} . It can be extended to produce 

two possible candidates based on the algorithm in Fig. 2.13,  



44       2 Association Rules and Sequential Patterns 

c1 = {x}{3, 5}{1} , and c2 = {x, 3, 5}{1} .

For c1 to be frequent, the subsequence s1 = {x}{3}{1}  has to be frequent 

(we assume that the MIS value of x is higher than that of item 1). Thus, we 

can use s1 and s2 to generate c1. c2 can be generated with s1 = {x, 3}{1} . s1

is basically the subsequence of c1 (or c2) without the second last item.  

The MScandidate-gen-SPM() function is given in Fig. 2.15, which is 

self-explanatory. Some special treatments are needed for 2-sequences be-

cause the same s1 (or s2) may generate two candidate sequences. We use 

two examples to show the working of the function.  

Example 24: Consider the items 1, 2, 3, 4, 5, and 6 with their MIS values,  

MIS(1) = 0.03  MIS(2) = 0.05  MIS(3) = 0.03  
MIS(4) = 0.07  MIS(5) = 0.08  MIS(6) = 0.09. 

Function MScandidate-gen-SPM(Fk 1)

1 Join Step. Candidate sequences are generated by joining Fk 1 with Fk 1.

2 if the MIS value of the first item in a sequence (denoted by s1) is less than (<) 

the MIS value of every other item in s1 then // s1 and s2 can be equal

Sequence s1 joins with s2 if (1) the subsequences obtained by dropping the 

second item of s1 and the last item of s2 are the same, and (2) the MIS 

value of the last item of s2 is greater than that of the first item of s1. Candi-

date sequences are generated by extending s1 with the last item of s2:

if the last item l in s2 is a separate element then

 {l} is appended at the end of s1 as a separate element to form a candi-

date sequence c1.

if (the length and the size of s1 are both 2) AND (the last item of s2 is 

greater than the last item of s1) then // maintain lexicographic order

l is added at the end of the last element of s1 to form another candi-

date sequence c2.

else if ((the length of s1 is 2 and the size of s1 is 1) AND (the last item 

of s2 is greater than the last item of s1)) OR (the length of s1

is greater than 2) then

the last item in s2 is added at the end of the last element of s1 to 

form the candidate sequence c2.

3 elseif the MIS value of the last item in a sequence (denoted by s2) is less than 

(<) the MIS value of every other item in s2 then

 A similar method to the one above can be used in the reverse order.  

4  else  use the Join Step in Fig. 2.13  

5 Prune step: A candidate sequence is pruned if any one of its (k 1)-

subsequences is infrequent (without minimum support) except the subse-

quence that does not contain the item with strictly the lowest MIS value.  

Fig. 2.15. The MScandidate-gen-SPM function 



2.8  Mining Sequential Patterns Based on PrefixSpan      45 

The data set has 100 sequences. The following frequent 3-sequences are in 

F3 with their actual support counts attached after “:”:  

(a). {1}{4}{5} :4  (b). {1}{4}{6} :5  (c). {1}{5}{6} :6

(d). {1}{5, 6} :5 (e). {1}{6}{3} :4  (f).  {6}{3}{6} :9

(g). {5, 6}{3} :5  (h). {5}{4}{3} :4 (i).  {4}{5}{3} :7.

For sequence (a) (= s1), item 1 has the lowest MIS value. It cannot join 

with sequence (b) because condition (1) in Fig. 2.15 is not satisfied. How-

ever, (a) can join with (c) to produce the candidate sequence, {1}{4}{5}{6} .

(a) can also join with (d) to produce {1}{4}{5, 6} . (b) can join with (e) to 

produce {1}{4}{6}{3} , which is pruned subsequently because {1}{4}{3}  is 

infrequent. (d) and (e) can be joined to give {1}{5, 6}{3} , but it is pruned 

because {1}{5}{3}  does not exist. (e) can join with (f) to produce 

{1}{6}{3}{6}  which is done in line 4 because both item 1 and item 3 in (e) 

have the same MIS value. However, it is pruned because {1}{3}{6}  is in-

frequent. We do not join (d) and (g), although they can be joined based on 

the algorithm in Fig. 2.13, because the first item of (d) has the lowest MIS 

value and we use a different join method for such sequences.  

Now we look at 3-sequences whose last item has strictly the lowest MIS 

value. (i) (= s1) can join with (h) (= s2) to produce {4}{5}{4}{3} . However, 

it is pruned because {4}{4}{3}  is not in F3.

Example 25: Now we consider generating candidates from frequent 2-

sequences, which is special as we noted earlier. We use the same items and 

MIS values in Example 24. The following frequent 2-sequences are in F2

with their actual support counts attached after “:”:  

(a). {1}{5} :6  (b). {1}{6} :7  (c) {5}{4} :8

(d). {1, 5} :6 (e). {1, 6} :6.

(a) can join with (b) to produce both {1}{5}{6}  and {1}{5, 6} . (b) can join 

with (d) to produce {1, 5}{6} . (e) can join with (a) to produce {1, 6}{5} .

Clearly, there are other joins. Again, (a) will not join with (c).  

Note that the support difference constraint in Sect. 2.4.1 can also be 

included. We omitted it to simplify the algorithm as it is already complex. 

Also, the user can instruct the algorithm to generate only certain sequential 

patterns or not to generate others by setting the MIS values suitably.  

2.8  Mining Sequential Patterns Based on PrefixSpan 

We now introduce another sequential pattern mining algorithm, called Pre-

fixSpan [439], which does not generate candidates. Different from the GSP 



46       2 Association Rules and Sequential Patterns 

algorithm [500], which can be regarded as performing breadth-first search 

to find all sequential patterns, PrefixSpan performs depth-first search.  

2.8.1  PrefixSpan Algorithm 

It is easy to introduce the original PrefixSpan algorithm using an example.  

Example 26: Consider again mining sequential patterns from Table 2.2 

with minsup = 25%. PrefixSpan first sorts all items in each element (or 

itemset) as shown in the table. Then, by one scan of the sequence database, 

it finds all frequent items, i.e., 30, 40, 70, 80 and 90. The corresponding 

length one sequential patterns are {30} , {40} , {70} , {80} and {90} .

We notice that the complete set of sequential patterns can actually be 

divided into five mutually exclusive subsets: the subset with prefix {30} ,

the subset with prefix {40} , the subset with prefix {70} , the subset with 

prefix {80} , and the subset with prefix {90} . We only need to find the 

five subsets one by one.  

To find sequential patterns having prefix {30} , the algorithm extends 

the prefix by adding items to it one at a time. To add the next item x, there 

are two possibilities, i.e., x joining the last itemset of the prefix (i.e., {30, 

x} ) and x forming a separate itemset (i.e., {30}{x} ). PrefixSpan performs 

the task by first forming the {30} -projected database and then finding all 

the cases of the two types in the projected database. The projected database 

is produced as follows: If a sequence contains item 30, then the suffix fol-

lowing the first 30 is extracted as a sequence in the projected database. 

Furthermore, since infrequent items cannot appear in a sequential pattern, 

all infrequent items are removed from the projection. The first sequence in 

our example, {30}{90} , is projected to {90} . The second sequence, {10,

20}{30}{10, 40, 60, 70} , is projected to {40, 70} , where the infrequent 

items 10 and 60 are removed. The third sequence {30, 50, 70, 80}  is pro-

jected to {_, 70, 80} , where the infrequent item 50 is removed. Note that 

the underline symbol “_” in this projection denotes that the items (only 30 

in this case) in the last itemset of the prefix are in the same itemset as items 

50, 70 and 80 in the sequence. The fourth sequence is projected to {30, 40, 

70, 80}{90} . The projection of the last sequence is empty since it does not 

contain item 30. The final projected database for prefix {30}  contains the 

following sequences: 

{90} , {40, 70} , {_, 70, 80} , and {30, 40, 70, 80}{90}

By scanning the projected database once, PrefixSpan finds all possible 

one item extensions to the prefix, i.e., all x’s for {30, x}  and all x’s for 

{30}{x} . Let us discuss the details.   



2.8  Mining Sequential Patterns Based on PrefixSpan      47 

Find All Frequent Patterns of the Form {30, x} : Two templates {_, x}

and {30, x} are used to match each projected sequence to accumulate the 

support count for each possible x (here x matches any item). If in the same 

sequence multiple matches are found with the same x, they are only 

counted once. Note that in general, the second template should use the last 

itemset in the prefix rather than only its last item. In our example, they are 

the same because there is only one item in the last itemset of the prefix. 

Find All Frequent Patterns of the Form {30}{x} : In this case, x’s are 

frequent items in the projected database that are not in the same itemset as 

the last item of the prefix.  

Let us continue with our example. It is easy to check that both items 70

and 80 are in the same itemset as 30. That is, we have two frequent se-

quences {30, 70}  and {30, 80} . The support count of {30, 70} is 2 based

on the projected database; one from the projected sequence {_, 70, 80} (a

{_, x} match) and one from the projected sequence {30, 40, 70, 80}{90} (a

{30, x} match). In both cases, the x’s are the same, i.e., 70. Similarly, the 

support count of {30, 80}  is 2 as well and thus frequent.

It is also easy to check that items 40, 70, and 90 are also frequent but 

not in the same itemset as 30. Thus, {30}{40} , {30}{70} , and {30}{90}

are three sequential patterns. The set of sequential patterns having prefix 

{30}  can be further divided into five mutually exclusive subsets: the ones 

with prefixes {30, 70} , {30, 80} , {30}{40} , {30}{70} , and {30}{90} .

We can recursively find the five subsets by forming their corresponding 

projected databases. For example, to find sequential patterns having prefix 

{30}{40} , we can form the {30}{40} -projected database containing pro-

jections {_, 70}  and {_, 70, 80}{90} . Template {_, x}  has two matches

and in both cases x is 70. Thus, {30}{40, 70}  is output as a sequential pat-

tern. Since there is no other frequent item in this projected database, the 

prefix cannot grow longer. The depth-first search returns from this branch. 

After completing the mining of the {30} -projected database, we find all 

sequential patterns with prefix {30} , i.e., {30} , {30}{40} , {30}{40, 70} ,

{30}{70} , {30}{90} , {30, 70} , {30, 80} and {30, 70, 80}

By forming and mining the {40} -, {70} -, {80} - and {90} -projected 

databases, the remaining sequential patterns can be found.  

The pseudo code of PrefixSpan can be found in [439]. Comparing to the 

breadth-first search of GSP, the key advantage of PrefixSpan is that it does 

not generate any candidates. It only counts the frequency of local items. 

With a low minimum support, a huge number of candidates can be gener-

ated by GSP, which can cause memory and computational problems.  



48       2 Association Rules and Sequential Patterns 

2.8.2  Mining with Multiple Minimum Supports 

The PrefixSpan algorithm can be adapted to mine with multiple minimum 

supports. Again, let MIS(i) be the user-specified minimum item support

of item i. Let  be the user-specified support difference threshold in the 

support difference constraint (Sect. 2.4.1), i.e., |sup(i) – sup(j)| ,

where i and j are items in the same sequential pattern, and sup(x) is the ac-

tual support of item x in the sequence database S. PrefixSpan can be modi-

fied as follows. We call the modified algorithm MS-PS.

1. Find every item i whose actual support in the sequence database S is at 

least MIS(i). i is called a frequent item.  

2. Sort all the discovered frequent items in ascending order according to 

their MIS values. Let i1, …, iu be the frequent items in the sorted order.  

3. For each item ik in the above sorted order,

(i) identify all the data sequences in S that contain ik and at the same 

time remove every item j in each sequence that does not satisfy 

|sup(j) – sup(ik)| . The resulting set of sequences is denoted by Sk.

Note that we are not using ik as the prefix to project the database S.

(ii) call the function r-PrefixSpan(ik, Sk, count(MIS(ik))) (restricted Pre-

fixSpan), which finds all sequential patterns that contain ik, i.e., no 

pattern that does not contain ik should be generated. r-PrefixSpan() 

uses count(MIS(ik)) (the minimum support count in terms of the 

number of sequences) as the only minimum support for mining in Sk.

The sequence count is easier to use than the MIS value in percent-

age, but they are equivalent. Once the complete set of such patterns 

is found from Sk, All occurrences of ik are removed from S.

r-PrefixSpan() is almost the same as PrefixSpan with one important differ-

ence. During each recursive call, either the prefix or every sequence in the 

projected database must contain ik because, as we stated above, this func-

tion finds only those frequent sequences that contain ik. Another minor dif-

ference is that the support difference constraint needs to be checked during 

each projection as sup(ik) may not be the lowest in the pattern.  

Example 27: Consider mining sequential patterns from Table 2.5. Let 

MIS(20) = 30% (3 sequences in minimum support count), MIS(30) = 20% 

(2 sequences), MIS(40) = 30% (3 sequences), and the MIS values for the 

rest of the items be 15% (2 sequences). We ignore the support difference 

constraint as it is simple. In step 1, we find three frequent items, 20, 30

and 40. After sorting in step 2, we have (30, 20, 40). We then go to step 3.  

In the first iteration of step 3, we work on i1 = 30. Step 3(i) gives us the 

second, fourth and sixth sequences in Table 2.5, i.e.,  



2.9  Generating Rules from Sequential Patterns      49 

S1 = { {40}{30}{40, 60} , {30}{20, 40}{40, 100} , {40}{30}{110} }. 

We then run r-PrefixSpan(30, S1, 3) in step 3(ii). The frequent items in 

S1 are 30, and 40. They both have the support of 3 sequences. The length 

one frequent sequence is only {30} . {40} is not included because we re-

quire that every frequent sequence must contain 30. We next find frequent 

sequences having prefix {30} . The database S1 is projected to give {40}

and {40}{40} . 20, 60 and 100 have been removed because their supports in 

S1 are less than the required support for item 30 (i.e., 3 sequences). For the 

same reason, the projection of {40}{30}{110} is empty. Thus, we find a 

length two frequent sequence {30}{40} . In this case, there is no item in the 

same itemset as 30 to form a frequent sequence of the form {30, x} .

Next, we find frequent sequences with prefix {40} . We again project S1,

which gives us only {30}{40} and {30} . {40, 100}  is not included be-

cause it does not contain 30. This projection gives us another length two 

frequent sequence {40}{30} . The first iteration of step 3 ends. 

In the second iteration of step 3, we work on i2 = 20. Step 3(i) gives us 

the first, fourth, fifth and seventh sequences in Table 2.5 with item 30 re-

moved, S2 = { {20, 50} , {20, 40}{40, 100} , {20, 40}{10} , {20}{80}{70} }. 

It is easy to see that only item 20 is frequent, and thus only a length one 

frequent sequence is generated, {20} .

In the third iteration of step 3, we work on i3 = 40. We can verify that 

again only one frequent sequence, i.e., {40} , is found.

The final set of sequential patterns generated from the sequence data-

base in Table 2.5 is { {30} , {20} , {40} , {40}{30} , {30}{40} }.

2.9  Generating Rules from Sequential Patterns 

In classic sequential pattern mining, no rules are generated. It is, however, 

possible to define and generate many types of rules. This section intro-

Table 2.5. An example of a sequence database 

Sequence ID Data Sequence 

1 {20, 50}

2 {40}{30}{40, 60}

3 {40, 90, 120}

4 {30}{20, 40}{40, 100}

5 {20, 40}{10}

6 {40}{30}{110}

7 {20}{80}{70}



50       2 Association Rules and Sequential Patterns 

duces only three types, sequential rules, label sequential rules and class

sequential rules, which have been used in Web usage mining and Web 

content mining (see Chaps. 11 and 12). 

2.9.1  Sequential Rules 

A sequential rule (SR) is an implication of the form, X Y, where Y is a 

sequence and X is a proper subsequence of Y, i.e., X is a subsequence of Y

and the length Y is greater than the length of X. The support of a sequen-

tial rule, X Y, in a sequence database S is the fraction of sequences in S

that contain Y. The confidence of a sequential rule, X Y, in S is the pro-

portion of sequences in S that contain X also contain Y.

Given a minimum support and a minimum confidence, according to the 

downward closure property, all the rules can be generated from frequent 

sequences without going to the original sequence data. Let us see an ex-

ample of a sequential rule found from the data sequences in Table 2.6.  

Table 2.6. An example of a sequence database for mining sequential rules 

Data Sequence 

1 {1}{3}{5}{7, 8, 9}

2 {1}{3}{6}{7, 8}

3 {1, 6}{7}

4 {1}{3}{5, 6}

5 {1}{3}{4}

Example 28: Given the sequence database in Table 2.6, the minimum sup-

port of 30% and the minimum confidence of 60%, one of the sequential 

rules found is the following,  

{1}{7} {1}{3}{7, 8}   [sup = 2/5, conf = 2/3] 

Data sequences 1, 2 and 3 contain {1}{7} , and data sequences 1 and 2 con-

tain {1}{3}{7, 8} .

If multiple minimum supports are used, we can employ the results of 

multiple minimum support pattern mining to generate all the rules.

2.9.2 Label Sequential Rules  

Sequential rules may not be restrictive enough in some applications. We 

introduce a special kind of sequential rules called label sequential rules.

A label sequential rule (LSR) is of the form, X Y, where Y is a sequence 



2.9  Generating Rules from Sequential Patterns      51 

and X is a sequence produced from Y by replacing some of its items with 

wildcards. A wildcard is denoted by an “*” which matches any item. These 

replaced items are usually very important and are called labels. The labels 

are a small subset of all the items in the data.  

Example 29: Given the sequence database in Table 2.6, the minimum sup-

port of 30% and the minimum confidence of 60%, one of the label sequen-

tial rules found is the following,

{1}{*}{7, *} {1}{3}{7, 8}   [sup = 2/5, conf = 2/2]. 

Notice the confidence change compared to the rule in Example 28. The 

supports of the two rules are the same. In this case, data sequences 1 and 2 

contain {1}{*}{7, *} , and they also contain {1}{3}{7, 8} . Items 3 and 8 are 

labels.

LSRs are useful because in some applications we need to predict the la-

bels in an input sequence, e.g., items 3 and 8 above. The confidence of the 

rule simply gives us the estimated probability that the two “*”s are 3 and 8

given that an input sequence contains {1}{*}{7, *} . We will see an applica-

tion of LSRs in Chap. 11, where we want to predict whether a word in a 

comparative sentence is an entity (e.g., a product name), which is a label.  

Note that due to the use of wildcards, frequent sequences alone are not 

sufficient for computing rule confidences. Scanning the data is needed. 

Notice also that the same pattern may appear in a data sequence multiple 

times. Rule confidences thus can be defined in different ways according to 

application needs. The wildcards may also be restricted to match only cer-

tain types of items to make the label prediction meaningful and unambigu-

ous (see some examples in Chap. 11).  

2.9.3 Class Sequential Rules 

Class sequential rules (CSR) are analogous to class association rules 

(CAR). Let S be a set of data sequences. Each sequence is also labeled 

with a class y. Let I be the set of all items in S, and Y be the set of all class 

labels, I  Y = . Thus, the input data D for mining is represented with 

{(s1, y1), (s2, y2), …, (sn, yn)}, where si is a sequence in S and yi Y is its 

class. A class sequential rule (CSR) is of the form  

 X y, where X is a sequence, and y Y.

A data instance (si, yi) is said to cover a CSR, X y, if X is a subsequence 

of si. A data instance (si, yi) is said to satisfy a CSR if X is a subsequence 

of si and yi = y.



Example 30: Table 2.7 gives an example of a sequence database with five 

data sequences and two classes, c1 and c2. Using the minimum support of 

30% and the minimum confidence of 60%, one of the discovered CSRs is: 

{1}{3}{7, 8}→ c1 [sup = 2/5, conf = 2/3]. 

 

Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5 

cover the rule. 

 

Table 2.7. An example of a sequence database for mining CSRs 

 

 
As in class association rule mining, we can modify the GSP and Prefix- Span algorithms to 

produce algorithms for mining all CSRs. Similarly, we can also use multiple minimum 

class supports and/or multiple minimum item supports as in class association rule mining. 

 



Web Mining 

 

 

 

 

 

 

 
UNIT - II 

Supervised and Unsupervised Learning 



3 Supervised Learning 

Supervised learning has been a great success in real-world applications. It 

is used in almost every domain, including text and Web domains. Super-

vised learning is also called classification or inductive learning in ma-

chine learning. This type of learning is analogous to human learning from 

past experiences to gain new knowledge in order to improve our ability to 

perform real-world tasks. However, since computers do not have “experi-

ences”, machine learning learns from data, which are collected in the past 

and represent past experiences in some real-world applications.  

There are several types of supervised learning tasks. In this chapter, we 

focus on one particular type, namely, learning a target function that can be 

used to predict the values of a discrete class attribute. This type of learning 

has been the focus of the machine learning research and is perhaps also the 

most widely used learning paradigm in practice. This chapter introduces a 

number of such supervised learning techniques. They are used in almost 

every Web mining application. We will see their uses from Chaps. 6–12.  

3.1 Basic Concepts 

A data set used in the learning task consists of a set of data records, which 

are described by a set of attributes A = {A1, A2, …, A|A|}, where |A| denotes 

the number of attributes or the size of the set A. The data set also has a 

special target attribute C, which is called the class attribute. In our subse-

quent discussions, we consider C separately from attributes in A due to its 

special status, i.e., we assume that C is not in A. The class attribute C has a 

set of discrete values, i.e., C = {c1, c2, …, c|C|}, where |C| is the number of 

classes and |C|  2. A class value is also called a class label. A data set for 

learning is simply a relational table. Each data record describes a piece of 

“past experience”. In the machine learning and data mining literature, a 

data record is also called an example, an instance, a case or a vector. A 

data set basically consists of a set of examples or instances.  

Given a data set D, the objective of learning is to produce a classifica-

tion/prediction function to relate values of attributes in A and classes in 

C. The function can be used to predict the class values/labels of the future 



56     3 Supervised Learning

data. The function is also called a classification model, a predictive

model or simply a classifier. We will use these terms interchangeably in 

this book. It should be noted that the function/model can be in any form, 

e.g., a decision tree, a set of rules, a Bayesian model or a hyperplane.  

Example 1: Table 3.1 shows a small loan application data set. It has four 

attributes. The first attribute is Age, which has three possible values, 

young, middle and old. The second attribute is Has_Job, which indicates 

whether an applicant has a job. Its possible values are true (has a job) and 

false (does not have a job). The third attribute is Own_house, which shows 

whether an applicant owns a house. The fourth attribute is Credit_rating,

which has three possible values, fair, good and excellent. The last column 

is the Class attribute, which shows whether each loan application was ap-

proved (denoted by Yes) or not (denoted by No) in the past.  

Table 3.1. A loan application data set  

ID Age Has_job Own_house Credit_rating Class 

1 young false false fair No

2 young false false good No

3 young true false good Yes

4 young true true fair Yes

5 young false false fair No

6 middle false false fair No

7 middle false false good No

8 middle true true good Yes

9 middle false true excellent Yes

10 middle false true excellent Yes

11 old false true excellent Yes

12 old false true good Yes

13 old true false good Yes

14 old true false excellent Yes

15 old false false fair No

We want to learn a classification model from this data set that can be 

used to classify future loan applications. That is, when a new customer 

comes into the bank to apply for a loan, after inputting his/her age, whether 

he/she has a job, whether he/she owns a house, and his/her credit rating, 

the classification model should predict whether his/her loan application 

should be approved.  

Our learning task is called supervised learning because the class labels 

(e.g., Yes and No values of the class attribute in Table 3.1) are provided in 



3.1 Basic Concepts      57 

the data. It is as if some teacher tells us the classes. This is in contrast to 

the unsupervised learning, where the classes are not known and the learn-

ing algorithm needs to automatically generate classes. Unsupervised learn-

ing is the topic of the next chapter.  

The data set used for learning is called the training data (or the train-

ing set). After a model is learned or built from the training data by a 

learning algorithm, it is evaluated using a set of test data (or unseen 

data) to assess the model accuracy.  

It is important to note that the test data is not used in learning the classi-

fication model. The examples in the test data usually also have class labels. 

That is why the test data can be used to assess the accuracy of the learned 

model because we can check whether the class predicted for each test case 

by the model is the same as the actual class of the test case. In order to 

learn and also to test, the available data (which has classes) for learning is 

usually split into two disjoint subsets, the training set (for learning) and the 

test set (for testing). We will discuss this further in Sect. 3.3.  

The accuracy of a classification model on a test set is defined as:  

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
Accuracy (1)

where a correct classification means that the learned model predicts the 

same class as the original class of the test case. There are also other meas-

ures that can be used. We will discuss them in Sect. 3.3.  

We pause here to raises two important questions:  

1. What do we mean by learning by a computer system? 

2. What is the relationship between the training and the test data?  

We answer the first question first. Given a data set D representing past 

“experiences”, a task T and a performance measure M, a computer system 

is said to learn from the data to perform the task T if after learning the sys-

tem’s performance on the task T improves as measured by M. In other 

words, the learned model or knowledge helps the system to perform the 

task better as compared to no learning. Learning is the process of building 

the model or extracting the knowledge.  

We use the data set in Example 1 to explain the idea. The task is to pre-

dict whether a loan application should be approved. The performance 

measure M is the accuracy in Equation (1). With the data set in Table 3.1, 

if there is no learning, all we can do is to guess randomly or to simply take 

the majority class (which is the Yes class). Suppose we use the majority 

class and announce that every future instance or case belongs to the class 

Yes. If the future data are drawn from the same distribution as the existing 

training data in Table 3.1, the estimated classification/prediction accuracy 



58     3 Supervised Learning

on the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the 

total of 15 examples in Table 3.1. The question is: can we do better with 

learning? If the learned model can indeed improve the accuracy, then the 

learning is said to be effective. 

The second question in fact touches the fundamental assumption of 

machine learning, especially the theoretical study of machine learning. 

The assumption is that the distribution of training examples is identical to 

the distribution of test examples (including future unseen examples). In 

practical applications, this assumption is often violated to a certain degree. 

Strong violations will clearly result in poor classification accuracy, which 

is quite intuitive because if the test data behave very differently from the 

training data then the learned model will not perform well on the test data. 

To achieve good accuracy on the test data, training examples must be suf-

ficiently representative of the test data.   

We now illustrate the steps of learning in Fig. 3.1 based on the preced-

ing discussions. In step 1, a learning algorithm uses the training data to 

generate a classification model. This step is also called the training step or 

training phase. In step 2, the learned model is tested using the test set to 

obtain the classification accuracy. This step is called the testing step or 

testing phase. If the accuracy of the learned model on the test data is satis-

factory, the model can be used in real-world tasks to predict classes of new 

cases (which do not have classes). If the accuracy is not satisfactory, we 

need to go back and choose a different learning algorithm and/or do some 

further processing of the data (this step is called data pre-processing, not 

shown in the figure). A practical learning task typically involves many it-

erations of these steps before a satisfactory model is built. It is also possi-

ble that we are unable to build a satisfactory model due to a high degree of 

randomness in the data or limitations of current learning algorithms.  

Fig. 3.1. The basic learning process: training and testing 

From the next section onward, we study several supervised learning al-

gorithms, except Sect. 3.3, which focuses on model/classifier evaluation.  

We note that throughout the chapter we assume that the training and test 

data are available for learning. However, in many text and Web page re-

lated learning tasks, this is not true. Usually, we need to collect raw data, 

Learning

algorithm
model AccuracyTest

data 

Training

data 

        Step 1: Training    Step 2: Testing 



3.2 Decision Tree Induction      59 

design attributes and compute attribute values from the raw data. The rea-

son is that the raw data in text and Web applications are often not suitable 

for learning either because their formats are not right or because there are 

no obvious attributes in the raw text documents or Web pages.  

3.2 Decision Tree Induction 

Decision tree learning is one of the most widely used techniques for classi-

fication. Its classification accuracy is competitive with other learning 

methods, and it is very efficient. The learned classification model is repre-

sented as a tree, called a decision tree. The techniques presented in this 

section are based on the C4.5 system from Quinlan [453]. 

Example 2: Figure 3.2 shows a possible decision tree learnt from the data 

in Table 3.1. The tree has two types of nodes, decision nodes (which are 

internal nodes) and leaf nodes. A decision node specifies some test (i.e., 

asks a question) on a single attribute. A leaf node indicates a class.  

Fig. 3.2. A decision tree for the data in Table 3.1 

The root node of the decision tree in Fig. 3.2 is Age, which basically 

asks the question: what is the age of the applicant? It has three possible an-

swers or outcomes, which are the three possible values of Age. These three 

values form three tree branches/edges. The other internal nodes have the 

same meaning. Each leaf node gives a class value (Yes or No). (x/y) below 

each class means that x out of y training examples that reach this leaf node 

have the class of the leaf. For instance, the class of the left most leaf node 

is Yes. Two training examples (examples 3 and 4 in Table 3.1) reach here 

and both of them are of class Yes.

To use the decision tree in testing, we traverse the tree top-down ac-

cording to the attribute values of the given test instance until we reach a 

leaf node. The class of the leaf is the predicted class of the test instance. 

Age? 

Has_job? Own_house? Credit_rating? 

Young        middle            old

  true    false 

Yes          No 
(2/2) (3/3) 

  true    false 

Yes          No 
(3/3) (2/2)

fair    good   excellent 

No Yes Yes 
(1/1) (2/2) (2/2) 



60     3 Supervised Learning

Example 3: We use the tree to predict the class of the following new in-

stance, which describes a new loan applicant.  

Age  Has_job  Own_house  Credit-rating   Class  

young  false  false good ?

Going through the decision tree, we find that the predicted class is No as

we reach the second leaf node from the left.

A decision tree is constructed by partitioning the training data so that the 

resulting subsets are as pure as possible. A pure subset is one that contains 

only training examples of a single class. If we apply all the training data in 

Table 3.1 on the tree in Fig. 3.2, we will see that the training examples 

reaching each leaf node form a subset of examples that have the same class 

as the class of the leaf. In fact, we can see that from the x and y values in 

(x/y). We will discuss the decision tree building algorithm in Sect. 3.2.1. 

An interesting question is: Is the tree in Fig. 3.2 unique for the data in 

Table 3.1? The answer is no. In fact, there are many possible trees that can 

be learned from the data. For example, Fig. 3.3 gives another decision tree, 

which is much smaller and is also able to partition the training data per-

fectly according to their classes.  

Fig. 3.3. A smaller tree for the data set in Table 3.1 

In practice, one wants to have a small and accurate tree for many rea-

sons. A smaller tree is more general and also tends to be more accurate (we 

will discuss this later). It is also easier to understand by human users. In 

many applications, the user understanding of the classifier is important. 

For example, in some medical applications, doctors want to understand the 

model that classifies whether a person has a particular disease. It is not sat-

isfactory to simply produce a classification because without understanding 

why the decision is made the doctor may not trust the system and/or does 

not gain useful knowledge.  

It is useful to note that in both Fig. 3.2 and Fig. 3.3, the training exam-

ples that reach each leaf node all have the same class (see the values of 

Has_job?

Own_house? 

  true    false 

Yes          No 
(3/3) (6/6)

  true    false 

Yes
(6/6)



3.2 Decision Tree Induction      61 

(x/y) at each leaf node). However, for most real-life data sets, this is usu-

ally not the case. That is, the examples that reach a particular leaf node are 

not of the same class, i.e., x y. The value of x/y is, in fact, the confidence

(conf) value used in association rule mining, and x is the support count.

This suggests that a decision tree can be converted to a set of if-then rules.  

Yes, indeed. The conversion is done as follows: Each path from the root 

to a leaf forms a rule. All the decision nodes along the path form the condi-

tions of the rule and the leaf node or the class forms the consequent. For 

each rule, a support and confidence can be attached. Note that in most 

classification systems, these two values are not provided. We add them 

here to see the connection of association rules and decision trees.  

Example 4: The tree in Fig. 3.3 generates three rules. “,” means “and”.  

Own_house = true  Class =Yes  [sup=6/15, conf=6/6] 

Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3] 

Own_house = false, Has_job = false  Class = No [sup=6/15, conf=6/6]. 

We can see that these rules are of the same format as association rules. 

However, the rules above are only a small subset of the rules that can be 

found in the data of Table 3.1. For instance, the decision tree in Fig. 3.3 

does not find the following rule:  

Age = young, Has_job = false  Class = No [sup=3/15, conf=3/3]. 

Thus, we say that a decision tree only finds a subset of rules that exist in 

data, which is sufficient for classification. The objective of association rule 

mining is to find all rules subject to some minimum support and minimum 

confidence constraints. Thus, the two methods have different objectives. 

We will discuss these issues again in Sect. 3.5 when we show that associa-

tion rules can be used for classification as well, which is obvious.

An interesting and important property of a decision tree and its resulting 

set of rules is that the tree paths or the rules are mutually exclusive and 

exhaustive. This means that every data instance is covered by a single rule 

(a tree path) and a single rule only. By covering a data instance, we mean 

that the instance satisfies the conditions of the rule. 

We also say that a decision tree generalizes the data as a tree is a 

smaller (more compact) description of the data, i.e., it captures the key 

regularities in the data. Then, the problem becomes building the best tree 

that is small and accurate. It turns out that finding the best tree that models 

the data is a NP-complete problem [248]. All existing algorithms use heu-

ristic methods for tree building. Below, we study one of the most success-

ful techniques.  



62     3 Supervised Learning

3.2.1 Learning Algorithm 

As indicated earlier, a decision tree T simply partitions the training data set 

D into disjoint subsets so that each subset is as pure as possible (of the 

same class). The learning of a tree is typically done using the divide-and-

conquer strategy that recursively partitions the data to produce the tree. At 

the beginning, all the examples are at the root. As the tree grows, the ex-

amples are sub-divided recursively. A decision tree learning algorithm is 

given in Fig. 3.4. For now, we assume that every attribute in D takes dis-

crete values. This assumption is not necessary as we will see later.  

The stopping criteria of the recursion are in lines 1–4 in Fig. 3.4. The 

algorithm stops when all the training examples in the current data are of 

the same class, or when every attribute has been used along the current tree 

. Algorithm decisionTree(D, A, T)

1 if D contains only training examples of the same class cj C then

2 make T a leaf node labeled with class cj;

3 elseif A = then

4  make T a leaf node labeled with cj, which is the most frequent class in D
5 else // D contains examples belonging to a mixture of classes. We select a single

6 // attribute to partition D into subsets so that each subset is purer 

7 p0 = impurityEval-1(D);

8 for each attribute Ai A (={A1, A2, …, Ak}) do

9 pi = impurityEval-2(Ai, D)

10  endfor 

11 Select Ag  {A1, A2, …, Ak} that gives the biggest impurity reduction, 

computed using p0 – pi;

12 if p0 – pg < threshold then // Ag does not significantly reduce impurity p0
13  make T a leaf node labeled with cj, the most frequent class in D.

14 else // Ag is able to reduce impurity p0
15 Make T a decision node on Ag;

16 Let the possible values of Ag be v1, v2, …, vm. Partition D into m

disjoint subsets D1, D2, …, Dm based on the m values of Ag.
17 for each Dj in {D1, D2, …, Dm} do

18 if Dj then

19 create a branch (edge) node Tj for vj as a child node of T;

20 decisionTree(Dj, A {Ag}, Tj) // Ag is removed

21 endif

22  endfor

23  endif

24 endif 

Fig. 3.4. A decision tree learning algorithm 



3.2 Decision Tree Induction      63 

path. In tree learning, each successive recursion chooses the best attribute

to partition the data at the current node according to the values of the at-

tribute. The best attribute is selected based on a function that aims to 

minimize the impurity after the partitioning (lines 7–11). In other words, it 

maximizes the purity. The key in decision tree learning is thus the choice 

of the impurity function, which is used in lines 7, 9 and 11 in Fig. 3.4. 

The recursive recall of the algorithm is in line 20, which takes the subset of 

training examples at the node for further partitioning to extend the tree.  

This is a greedy algorithm with no backtracking. Once a node is created, 

it will not be revised or revisited no matter what happens subsequently.  

3.2.2 Impurity Function 

Before presenting the impurity function, we use an example to show what 

the impurity function aims to do intuitively.  

Example 5: Figure 3.5 shows two possible root nodes for the data in Table 

3.1.

Fig. 3.5. Two possible root nodes or two possible attributes for the root node 

Fig. 3.5(A) uses Age as the root node, and Fig. 3.5(B) uses Own_house

as the root node. Their possible values (or outcomes) are the branches. At 

each branch, we listed the number of training examples of each class (No

or Yes) that land or reach there. Fig. 3.5(B) is obviously a better choice for 

the root. From a prediction or classification point of view, Fig. 3.5(B) 

makes fewer mistakes than Fig. 3.5(A). In Fig. 3.5(B), when Own_house = 

true every example has the class Yes. When Own_house = false, if we take 

majority class (the most frequent class), which is No, we make three mis-

takes/errors. If we look at Fig. 3.5(A), the situation is worse. If we take the 

majority class for each branch, we make five mistakes (marked in bold). 

Thus, we say that the impurity of the tree in Fig. 3.5(A) is higher than the 

tree in Fig. 3.5(B). To learn a decision tree, we prefer Own_house to Age

to be the root node. Instead of counting the number of mistakes or errors, 

C4.5 uses a more principled approach to perform this evaluation on every 

attribute in order to choose the best attribute to build the tree. 

No:  0 No:  6

Yes:  6 Yes:  3

(B)

Own_house? 

  true    false 

No:  3 No:  2 No: 1

Yes:  2 Yes:  3  Yes:  4 

(A)

Age? 

   Young     middle     old



64     3 Supervised Learning

The most popular impurity functions used for decision tree learning are 

information gain and information gain ratio, which are used in C4.5 as 

two options. Let us first discuss information gain, which can be extended 

slightly to produce information gain ratio.  

The information gain measure is based on the entropy function from in-

formation theory [484]:  

,1)Pr(

)Pr(log)Pr()(

||

1

||

1

2

C

j

j

j

C

j

j

c

ccDentropy (2)

where Pr(cj) is the probability of class cj in data set D, which is the number 

of examples of class cj in D divided by the total number of examples in D.

In the entropy computation, we define 0log0 = 0. The unit of entropy is 

bit. Let us use an example to get a feeling of what this function does. 

Example 6: Assume we have a data set D with only two classes, positive 

and negative. Let us see the entropy values for three different compositions 

of positive and negative examples:  

1.  The data set D has 50% positive examples (Pr(positive) = 0.5) and 50% 

negative examples (Pr(negative) = 0.5). 

.15.0log5.05.0log5.0)( 22Dentropy

2.  The data set D has 20% positive examples (Pr(positive) = 0.2) and 80% 

negative examples (Pr(negative) = 0.8). 

.722.08.0log8.02.0log2.0)( 22Dentropy

3.  The data set D has 100% positive examples (Pr(positive) = 1) and no 

negative examples, (Pr(negative) = 0). 

.00log01log1)( 22Dentropy

We can see a trend: When the data becomes purer and purer, the entropy 

value becomes smaller and smaller. In fact, it can be shown that for this 

binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5 

the entropy has the maximum value, i.e., 1 bit. When all the data in D be-

long to one class the entropy has the minimum value, 0 bit. 

It is clear that the entropy measures the amount of impurity or disorder 

in the data. That is exactly what we need in decision tree learning. We now 

describe the information gain measure, which uses the entropy function.  



3.2 Decision Tree Induction      65 

Information Gain 

The idea is the following: 

1. Given a data set D, we first use the entropy function (Equation 2) to 

compute the impurity value of D, which is entropy(D). The impuri-

tyEval-1 function in line 7 of Fig. 3.4 performs this task.  

2. Then, we want to know which attribute can reduce the impurity most if 

it is used to partition D. To find out, every attribute is evaluated (lines 

8–10 in Fig. 3.4). Let the number of possible values of the attribute Ai be 

v. If we are going to use Ai to partition the data D, we will divide D into 

v disjoint subsets D1, D2, …, Dv. The entropy after the partition is 

.)(
||

||
)(

1

v

j

j

j

A Dentropy
D

D
Dentropy

i

(3)

 The impurityEval-2 function in line 9 of Fig. 3.4 performs this task.  

3. The information gain of attribute Ai is computed with: 

).()(),( DentropyDentropyADgain
iAi

(4)

Clearly, the gain criterion measures the reduction in impurity or disorder. 

The gain measure is used in line 11 of Fig. 3.4, which chooses attribute Ag
resulting in the largest reduction in impurity. If the gain of Ag is too small, 

the algorithm stops for the branch (line 12). Normally a threshold is used 

here. If choosing Ag is able to reduce impurity significantly, Ag is em-

ployed to partition the data to extend the tree further, and so on (lines 15–

21 in Fig. 3.4). The process goes on recursively by building sub-trees using 

D1, D2, …, Dm (line 20). For subsequent tree extensions, we do not need Ag
any more, as all training examples in each branch has the same Ag value. 

Example 7: Let us compute the gain values for attributes Age, Own_house

and Credit_Rating using the whole data set D in Table 3.1, i.e., we evaluate 

for the root node of a decision tree.  

First, we compute the entropy of D. Since D has 6 No class training ex-

amples, and 9 Yes class training examples, we have  

.971.0
15

9
log

15

9

15

6
log

15

6
)( 22Dentropy

We then try Age, which partitions the data into 3 subsets (as Age has 

three possible values) D1 (with Age=young), D2 (with Age=middle), and D3

(with Age=old). Each subset has five training examples. In Fig. 3.5, we 

also see the number of No class examples and the number of Yes examples 

in each subset (or in each branch).



66     3 Supervised Learning

.888.0722.0
15

5
971.0

15

5
971.0

15

5
             

)(
15

5
)(

15

5
)(

15

5
)( 321 DentropyDentropyDentropyDentropyAge

Likewise, we compute for Own_house, which partitions D into two sub-

sets, D1 (with Own_house=true) and D2 (with Own_house=false).

.551.0 918.0
15

9
0

15

6
           

)(
15

9
)(

15

6
)( 21_ DentropyDentropyDentropy houseOwn

Similarly, we obtain entropyHas_job(D) = 0.647, and entropyCredit_rating(D)

= 0.608. The gains for the attributes are:  

gain(D, Age) = 0.971  0.888 = 0.083 

gain(D, Own_house) = 0.971  0.551 = 0.420 

gain(D, Has_job) = 0.971  0.647 = 0.324 

gain(D, Credit_rating) = 0.971  0.608 = 0.363. 

Own_house is the best attribute for the root node. Figure 3.5(B) shows the 

root node using Own_house. Since the left branch has only one class (Yes)

of data, it results in a leaf node (line 1 in Fig. 3.4). For Own_house = false,

further extension is needed. The process is the same as above, but we only 

use the subset of the data with Own_house = false, i.e., D2.

Information Gain Ratio 

The gain criterion tends to favor attributes with many possible values. An 

extreme situation is that the data contain an ID attribute that is an identifi-

cation of each example. If we consider using this ID attribute to partition 

the data, each training example will form a subset and has only one class, 

which results in entropyID(D) = 0. So the gain by using this attribute is 

maximal. From a prediction point of review, such a partition is useless.  

Gain ratio (Equation 5) remedies this bias by normalizing the gain us-

ing the entropy of the data with respect to the values of the attribute. Our 

previous entropy computations are done with respect to the class attribute:  

s

j

jj

i
i

D

D

D

D

ADgain
ADgainRatio

1 ||

||
log

||

||

),(
),(

2

(5)

where s is the number of possible values of Ai, and Dj is the subset of data 



3.2 Decision Tree Induction      67 

that has the jth value of Ai. |Dj|/|D| corresponds to the probability of Equa-

tion (2). Using Equation (5), we simply choose the attribute with the high-

est gainRatio value to extend the tree.

This method works because if Ai has too many values the denominator 

will be large. For instance, in our above example of the ID attribute, the 

denominator will be log2|D|. The denominator is called the split info in 

C4.5. One note is that the split info can be 0 or very small. Some heuristic 

solutions can be devised to deal with it (see [453]).  

3.2.3 Handling of Continuous Attributes 

It seems that the decision tree algorithm can only handle discrete attributes. 

In fact, continuous attributes can be dealt with easily as well. In a real life 

data set, there are often both discrete attributes and continuous attributes. 

Handling both types in an algorithm is an important advantage.  

To apply the decision tree building method, we can divide the value 

range of attribute Ai into intervals at a particular tree node. Each interval 

can then be considered a discrete value. Based on the intervals, gain or 

gainRatio is evaluated in the same way as in the discrete case. Clearly, we 

can divide Ai into any number of intervals at a tree node. However, two in-

tervals are usually sufficient. This binary split is used in C4.5. We need to 

find a threshold value for the division.  

Clearly, we should choose the threshold that maximizes the gain (or 

gainRatio). We need to examine all possible thresholds. This is not a prob-

lem because although for a continuous attribute Ai the number of possible 

values that it can take is infinite, the number of actual values that appear in 

the data is always finite. Let the set of distinctive values of attribute Ai that 

occur in the data be {v1, v2, …, vr}, which are sorted in ascending order. 

Clearly, any threshold value lying between vi and vi+1 will have the same 

effect of dividing the training examples into those whose value of attribute 

Ai lies in {v1, v2, …, vi} and those whose value lies in {vi+1, vi+2, …, vr}. 

There are thus only r 1 possible splits on Ai, which can all be evaluated.

The threshold value can be the middle point between vi and vi+1, or just 

on the “right side” of value vi, which results in two intervals Ai vi and Ai
> vi. This latter approach is used in C4.5. The advantage of this approach is 

that the values appearing in the tree actually occur in the data. The thresh-

old value that maximizes the gain (gainRatio) value is selected. We can 

modify the algorithm in Fig. 3.4 (lines 8–11) easily to accommodate this 

computation so that both discrete and continuous attributes are considered.  

A change to line 20 of the algorithm in Fig. 3.4 is also needed. For a 

continuous attribute, we do not remove attribute Ag because an interval can 



68     3 Supervised Learning

be further split recursively in subsequent tree extensions. Thus, the same 

continuous attribute may appear multiple times in a tree path (see Example 

9), which does not happen for a discrete attribute.  

From a geometric point of view, a decision tree built with only continu-

ous attributes represents a partitioning of the data space. A series of splits 

from the root node to a leaf node represents a hyper-rectangle. Each side of 

the hyper-rectangle is an axis-parallel hyperplane. 

Example 8: The hyper-rectangular regions in Fig. 3.6(A), which partitions 

the space, are produced by the decision tree in Fig. 3.6(B). There are two 

classes in the data, represented by empty circles and filled rectangles.  

Fig. 3.6. A partitioning of the data space and its corresponding decision tree  

Handling of continuous (numeric) attributes has an impact on the effi-

ciency of the decision tree algorithm. With only discrete attributes the al-

gorithm grows linearly with the size of the data set D. However, sorting of 

a continuous attribute takes |D|log|D| time, which can dominate the tree 

learning process. Sorting is important as it ensures that gain or gainRatio 

can be computed in one pass of the data.  

3.2.4 Some Other Issues  

We now discuss several other issues in decision tree learning.

Tree Pruning and Overfitting: A decision tree algorithm recursively par-

titions the data until there is no impurity or there is no attribute left. This 

process may result in trees that are very deep and many tree leaves may 

cover very few training examples. If we use such a tree to predict the train-

ing set, the accuracy will be very high. However, when it is used to clas-

sify unseen test set, the accuracy may be very low. The learning is thus not 

effective, i.e., the decision tree does not generalize the data well. This 

X

Y

2.6

2.5

   2 

0   2  3  4

X

Y

 2  > 2 

Y

 2  > 2 

X
 3  > 3 

X

Y

 4   > 4 

 2.5   > 2.5 

 2.6   > 2.6 

(A) A partition of the data space  (B). The decision tree 



3.2 Decision Tree Induction      69 

phenomenon is called overfitting. More specifically, we say that a classi-

fier f1 overfits the data if there is another classifier f2 such that f1 achieves a 

higher accuracy on the training data than f2, but a lower accuracy on the 

unseen test data than f2 [385].  

Overfitting is usually caused by noise in the data, i.e., wrong class val-

ues/labels and/or wrong values of attributes, but it may also be due to the 

complexity and randomness of the application domain. These problems 

cause the decision tree algorithm to refine the tree by extending it to very 

deep using many attributes.  

To reduce overfitting in the context of decision tree learning, we per-

form pruning of the tree, i.e., to delete some branches or sub-trees and re-

place them with leaves of majority classes. There are two main methods to 

do this, stopping early in tree building (which is also called pre-pruning)

and pruning the tree after it is built (which is called post-pruning). Post-

pruning has been shown more effective. Early-stopping can be dangerous 

because it is not clear what will happen if the tree is extended further 

(without stopping). Post-pruning is more effective because after we have 

extended the tree to the fullest, it becomes clearer which branches/sub-

trees may not be useful (overfit the data). The general idea of post-pruning 

is to estimate the error of each tree node. If the estimated error for a node 

is less than the estimated error of its extended sub-tree, then the sub-tree is 

pruned. Most existing tree learning algorithms take this approach. See 

[453] for a technique called the pessimistic error based pruning.  

Example 9: In Fig. 3.6(B), the sub-tree representing the rectangular region 

X  2, Y > 2.5, Y  2.6 

in Fig. 3.6(A) is very likely to be overfitting. The region is very small and 

contains only a single data point, which may be an error (or noise) in the 

data collection. If it is pruned, we obtain Fig. 3.7(A) and (B).  

Fig. 3.7. The data space partition and the decision tree after pruning  

X

Y

2.6

2.5

   2 

0   2  3  4

X

Y

 2  > 2 

 2  > 2 

X
 3  > 3 

X

 4   > 4 

  (A) A partition of the data space  (B). The decision tree 



70     3 Supervised Learning

Another common approach to pruning is to use a separate set of data 

called the validation set, which is not used in training and neither in test-

ing. After a tree is built, it is used to classify the validation set. Then, we 

can find the errors at each node on the validation set. This enables us to 

know what to prune based on the errors at each node.  

Rule Pruning: We noted earlier that a decision tree can be converted to a 

set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-

duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted 

to a set of rules in the way discussed in Example 4. Rule pruning is then 

performed by removing some conditions to make the rules shorter and 

fewer (after pruning some rules may become redundant). In most cases, 

pruning results in a more accurate rule set as shorter rules are less likely to 

overfit the training data. Pruning is also called generalization as it makes 

rules more general (with fewer conditions). A rule with more conditions is 

more specific than a rule with fewer conditions.

Example 10: The sub-tree below X  2 in Fig. 3.6(B) produces these rules: 

Rule 1:  X  2, Y > 2.5, Y > 2.6 

Rule 2:  X  2, Y > 2.5, Y  2.6  O 

Rule 3:  X  2, Y  2.5 

Note that Y > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule 

1 should be  

Rule 1:  X  2, Y > 2.6 

In pruning, we may be able to delete the conditions Y > 2.6 from Rule 1 to 

produce:

X  2 

Then Rule 2 and Rule 3 become redundant and can be removed.  

A useful point to note is that after pruning the resulting set of rules may 

no longer be mutually exclusive and exhaustive. There may be data 

points that satisfy the conditions of more than one rule, and if inaccurate 

rules are discarded, of no rules. An ordering of the rules is thus needed to 

ensure that when classifying a test case only one rule will be applied to de-

termine the class of the test case. To deal with the situation that a test case 

does not satisfy the conditions of any rule, a default class is used, which is 

usually the majority class.

Handling Missing Attribute Values: In many practical data sets, some at-

tribute values are missing or not available due to various reasons. There 

are many ways to deal with the problem. For example, we can fill each 



3.3 Classifier Evaluation      71 

missing value with the special value “unknown” or the most frequent value 

of the attribute if the attribute is discrete. If the attribute is continuous, use 

the mean of the attribute for each missing value.  

The decision tree algorithm in C4.5 takes another approach. At a tree 

node, distribute the training example with missing value for the attribute to 

each branch of the tree proportionally according to the distribution of the 

training examples that have values for the attribute.

Handling Skewed Class Distribution: In many applications, the propor-

tions of data for different classes can be very different. For instance, in a 

data set of intrusion detection in computer networks, the proportion of in-

trusion cases is extremely small (< 1%) compared with normal cases. Di-

rectly applying the decision tree algorithm for classification or prediction 

of intrusions is usually not effective. The resulting decision tree often con-

sists of a single leaf node “normal”, which is useless for intrusion detec-

tion. One way to deal with the problem is to over sample the intrusion ex-

amples to increase its proportion. Another solution is to rank the new cases 

according to how likely they may be intrusions. The human users can then 

investigate the top ranked cases.  

3.3 Classifier Evaluation 

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-

fective evaluation is crucial because without knowing the approximate ac-

curacy of a classifier, it cannot be used in real-world tasks.  

There are many ways to evaluate a classifier, and there are also many 

measures. The main measure is the classification accuracy (Equation 1), 

which is the number of correctly classified instances in the test set divided 

by the total number of instances in the test set. Some researchers also use 

the error rate, which is 1 – accuracy. Clearly, if we have several classifi-

ers, the one with the highest accuracy is preferred. Statistical significance 

tests may be used to check whether one classifier’s accuracy is signifi-

cantly better than that of another given the same training and test data sets. 

Below, we first present several common methods for classifier evaluation, 

and then introduce some other evaluation measures.  

3.3.1 Evaluation Methods 

Holdout Set: The available data D is divided into two disjoint subsets, the 

training set Dtrain and the test set Dtest, D = Dtrain Dtest and Dtrain Dtest = 



72     3 Supervised Learning

. The test set is also called the holdout set. This method is mainly used 

when the data set D is large. Note that the examples in the original data set 

D are all labeled with classes.

As we discussed earlier, the training set is used for learning a classifier 

while the test set is used for evaluating the resulting classifier. The training 

set should not be used to evaluate the classifier as the classifier is biased 

toward the training set. That is, the classifier may overfit the training set, 

which results in very high accuracy on the training set but low accuracy on 

the test set. Using the unseen test set gives an unbiased estimate of the 

classification accuracy. As for what percentage of the data should be used 

for training and what percentage for testing, it depends on the data set size. 

50–50 and two thirds for training and one third for testing are commonly 

used.

To partition D into training and test sets, we can use a few approaches: 

1. We randomly sample a set of training examples from D for learning and 

use the rest for testing.

2. If the data is collected over time, then we can use the earlier part of the 

data for training/learning and the later part of the data for testing. In 

many applications, this is a more suitable approach because when the 

classifier is used in the real-world the data are from the future. This ap-

proach thus better reflects the dynamic aspects of applications. 

Multiple Random Sampling: When the available data set is small, using 

the above methods can be unreliable because the test set would be too 

small to be representative. One approach to deal with the problem is to per-

form the above random sampling n times. Each time a different training set 

and a different test set are produced. This produces n accuracies. The final 

estimated accuracy on the data is the average of the n accuracies.  

Cross-Validation: When the data set is small, the n-fold cross-validation

method is very commonly used. In this method, the available data is parti-

tioned into n equal-size disjoint subsets. Each subset is then used as the test 

set and the remaining n 1 subsets are combined as the training set to learn 

a classifier. This procedure is then run n times, which gives n accuracies. 

The final estimated accuracy of learning from this data set is the average of 

the n accuracies. 10-fold and 5-fold cross-validations are often used.  

A special case of cross-validation is the leave-one-out cross-validation.

In this method, each fold of the cross validation has only a single test ex-

ample and all the rest of the data is used in training. That is, if the original 

data has m examples, then this is m-fold cross-validation. This method is 

normally used when the available data is very small. It is not efficient for a 

large data set as m classifiers need to be built. 



3.3 Classifier Evaluation      73 

In Sect. 3.2.4, we mentioned that a validation set can be used to prune a 

decision tree or a set of rules. If a validation set is employed for that pur-

pose, it should not be used in testing. In that case, the available data is di-

vided into three subsets, a training set, a validation set and a test set. Apart 

from using a validation set to help tree or rule pruning, a validation set is 

also used frequently to estimate parameters in learning algorithms. In such 

cases, the values that give the best accuracy on the validation set are used 

as the final values of the parameters. Cross-validation can be used for pa-

rameter estimating as well. Then a separate validation set is not needed. In-

stead, the whole training set is used in cross-validation.  

3.3.2 Precision, Recall, F-score and Breakeven Point 

In some applications, we are only interested in one class. This is particu-

larly true for text and Web applications. For example, we may be inter-

ested in only the documents or web pages of a particular topic. Also, in 

classification involving skewed or highly imbalanced data, e.g., network 

intrusion and financial fraud detection, we are typically interested in only 

the minority class. The class that the user is interested in is commonly 

called the positive class, and the rest negative classes (the negative classes 

may be combined into one negative class). Accuracy is not a suitable 

measure in such cases because we may achieve a very high accuracy, but 

may not identify a single intrusion. For instance, 99% of the cases are 

normal in an intrusion detection data set. Then a classifier can achieve 

99% accuracy without doing anything by simply classifying every test case 

as “not intrusion”. This is, however, useless.  

Precision and recall are more suitable in such applications because they 

measure how precise and how complete the classification is on the positive 

class. It is convenient to introduce these measures using a confusion ma-

trix (Table 3.2). A confusion matrix contains information about actual and 

predicted results given by a classifier.  

Table 3.2. Confusion matrix of a classifier 

Classified positive Classified negative 

Actual positive TP FN

Actual negative FP TN

where 

TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)

FP: the number of incorrect classifications of negative examples (false positive)

TN: the number of correct classifications of negative examples (true negative)



74     3 Supervised Learning

Based on the confusion matrix, the precision (p) and recall (r) of the posi-

tive class are defined as follows:  

.       .
FNTP

TP
 r

FPTP

TP
p (6)

In words, precision p is the number of correctly classified positive ex-

amples divided by the total number of examples that are classified as posi-

tive. Recall r is the number of correctly classified positive examples di-

vided by the total number of actual positive examples in the test set. The 

intuitive meanings of these two measures are quite obvious.  

However, it is hard to compare classifiers based on two measures, which 

are not functionally related. For a test set, the precision may be very high 

but the recall can be very low, and vice versa.  

Example 11: A test data set has 100 positive examples and 1000 negative 

examples. After classification using a classifier, we have the following 

confusion matrix (Table 3.3), 

Table 3.3. Confusion matrix of a classifier 

Classified positive Classified negative 

Actual positive 1 99

Actual negative 0 1000 

This confusion matrix gives the precision p = 100% and the recall r = 1% 

because we only classified one positive example correctly and classified no 

negative examples wrongly. 

Although in theory precision and recall are not related, in practice high 

precision is achieved almost always at the expense of recall and high recall 

is achieved at the expense of precision. In an application, which measure is 

more important depends on the nature of the application. If we need a sin-

gle measure to compare different classifiers, the F-score is often used:

rp

pr
F

2
(7)

The F-score (also called the F1-score) is the harmonic mean of precision 

and recall.

rp

F
11

2
(8)



3.4 Rule Induction      75 

The harmonic mean of two numbers tends to be closer to the smaller of 

the two. Thus, for the F-score to be high, both p and r must be high.  

There is also another measure, called precision and recall breakeven 

point, which is used in the information retrieval community. The break-

even point is when the precision and the recall are equal. This measure as-

sumes that the test cases can be ranked by the classifier based on their like-

lihoods of being positive. For instance, in decision tree classification, we 

can use the confidence of each leaf node as the value to rank test cases.

Example 12: We have the following ranking of 20 test documents. 1 

represents the highest rank and 20 represents the lowest rank. “+” (“ ”) 

represents an actual positive (negative) documents.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ + + + + + + + + +

Assume that the test set has 10 positive examples.  

At rank 1:   p = 1/1 = 100%  r = 1/10 = 10% 
At rank 2:  p = 2/2 = 100%  r = 2/10 = 20% 

… … … 

At rank 9:   p = 6/9 = 66.7%  r = 6/10 = 60% 
At rank 10:   p = 7/10 = 70%  r = 7/10 = 70% 

The breakeven point is p = r = 70%. Note that interpolation is needed if 

such a point cannot be found.  

3.4 Rule Induction 

In Sect. 3.2, we showed that a decision tree can be converted to a set of 

rules. Clearly, the set of rules can be used for classification as the tree. A 

natural question is whether it is possible to learn classification rules di-

rectly. The answer is yes. The process of learning such rules is called rule 

induction or rule learning. We study two approaches in the section. 

3.4.1 Sequential Covering 

Most rule induction systems use an algorithm called sequential covering.

A classifier built with this algorithm consists of a list of rules, which is 

also called a decision list [463]. In the list, the ordering of the rules is sig-

nificant.

The basic idea of sequential covering is to learn a list of rules sequen-

tially, one at a time, to cover the training data. After each rule is learned, 



76     3 Supervised Learning

the training examples covered by the rule are removed. Only the remaining 

data are used to find subsequent rules. Recall that a rule covers an example 

if the example satisfies the conditions of the rule. We study two specific 

algorithms based on this general strategy. The first algorithm is based on 

the CN2 system [104], and the second algorithm is based on the ideas in 

FOIL [452], I-REP [189], REP [70], and RIPPER [106] systems. Many 

ideas are also taken from [385].  

Algorithm 1 (Ordered Rules)

This algorithm learns each rule without pre-fixing a class. That is, in each 

iteration, a rule of any class may be found. Thus rules of different classes 

may intermix in the final rule list. The ordering of rules is important. 

This algorithm is given in Fig. 3.8. D is the training data. RuleList is the 

list of rules, which is initialized to empty set (line 1). Rule is the best rule 

found in each iteration. The function learn-one-rule-1() learns the Rule

(lines 2 and 6). The stopping criteria for the while-loop can be of various 

kinds. Here we use D =  or Rule is NULL (a rule is not learned). Once a 

rule is learned from the data, it is inserted into RuleList at the end (line 4). 

All the training examples that are covered by the rule are removed from 

the data (line 5). The remaining data is used to find the next rule and so on. 

After rule learning ends, a default class is inserted at the end of RuleList. 

This is because there may still be some training examples that are not cov-

ered by any rule as no good rule can be found from them, or because some 

test cases may not be covered by any rule and thus cannot be classified. 

The final list of rules is as follows:

<r1, r2, …, rk, default-class> (9) 

where ri is a rule.

Algorithm 2 (Ordered Classes)

This algorithm learns all rules for each class together. After rule learning 

for one class is completed, it moves to the next class. Thus all rules for 

each class appear together in the rule list. The sequence of rules for each 

class is unimportant, but the rule subsets for different classes are ordered. 

Typically, the algorithm finds rules for the least frequent class first, then 

the second least frequent class and so on. This ensures that some rules are 

learned for rare classes. Otherwise, they may be dominated by frequent 

classes and end up with no rules if considered after frequent classes.  

The algorithm is given in Fig. 3.9. The data set D is split into two sub-

sets, Pos and Neg, where Pos contains all the examples of class c from D,



3.4 Rule Induction      77 

and Neg the rest of the examples in D (line 3). c is the class that the algo-

rithm is working on now. Two stopping conditions for rule learning of 

each class are in line 4 and line 6. The other parts of the algorithm are 

quite similar to those of the first algorithm in Fig. 3.8. Both learn-one-rule-

1() and learn-one-rule-2() functions are described in Sect. 3.4.2. 

Use of Rules for Classification 

To use a list of rules for classification is straightforward. For a test case, 

we simply try each rule in the list sequentially. The class of the first rule 

that covers this test case is assigned as the class of the test case. Clearly, if 

no rule applies to the test case, the default class is used.  

Algorithm sequential-covering-1(D)

1 RuleList ;

2 Rule  learn-one-rule-1(D);

3 while Rule is not NULL AND D do

4 RuleList  insert Rule at the end of RuleList;
5 Remove from D the examples covered by Rule;

6 Rule  learn-one-rule-1(D)
7 endwhile

8 insert a default class c at the end of RuleList, where c is the majority class 

in D;
9 return RuleList

Fig. 3.8. The first rule learning algorithm based on sequential covering 

Algorithm sequential-covering-2(D, C)

1 RuleList ; // empty rule set at the beginning 

2 for each class c C do 

3 prepare data (Pos, Neg), where Pos contains all the examples of class 
c from D, and Neg contains the rest of the examples in D;

4 while Pos do

5 Rule  learn-one-rule-2(Pos, Neg, c);  
6 if Rule is NULL then

7 exit-while-loop 

8 else RuleList  insert Rule at the end of RuleList;
9  Remove examples covered by Rule from (Pos, Neg)

10 endif

11 endwhile

12 endfor

13 return RuleList

Fig. 3.9. The second rule learning algorithm based on sequential covering 



78     3 Supervised Learning

3.4.2 Rule Learning: Learn-One-Rule Function 

We now present the function learn-one-rule(), which works as follows: It 

starts with an empty set of conditions. In the first iteration, one condition is 

added. In order to find the best condition to add, all possible conditions are 

tried, which form candidate rules. A condition is of the form Ai op v,

where Ai is an attribute and v is a value of Ai. We also called it an attrib-

ute-value pair. For a discrete attribute, op is “=”. For a continuous attrib-

ute, op  {>, }. The algorithm evaluates all the candidates to find the best 

one (the rest are discarded). After the first best condition is added, it tries 

to add the second condition and so on in the same fashion until some stop-

ping condition is satisfied. Note that we omit the rule class here because it 

is implied, i.e., the majority class of the data covered by the conditions.  

This is a heuristic and greedy algorithm in that after a condition is 

added, it will not be changed or removed through backtracking. Ideally, we 

would want to try all possible combinations of attributes and values. How-

ever, this is not practical as the number of possibilities grows exponen-

tially. Hence, in practice, the above greedy algorithm is used. However, in-

stead of keeping only the best set of conditions, we can improve the 

function a little by keeping k best sets of conditions (k > 1) in each itera-

tion. This is called the beam search (k beams), which ensures that a larger 

space is explored. Below, we present two specific implementations of the 

algorithm, namely learn-one-rule-1() and learn-one-rule-2(). learn-one-

rule-1() is used in the sequential-covering-1 algorithm, and learn-one-rule-

2() is used in the sequential-covering-2 algorithm.  

Learn-One-Rule-1

This function uses beam search (Fig. 3.10). The number of beams is k.

BestCond stores the conditions of the rule to be returned. The class is omit-

ted as it is the majority class of the data covered by BestCond. candidate-

CondSet stores the current best condition sets (which are the frontier 

beams) and its size is less than or equal to k. Each condition set contains a 

set of conditions connected by “and” (conjunction). newCandidateCondSet

stores all the new candidate condition sets after adding each attribute-value 

pair (a possible condition) to every candidate in candidateCondSet (lines

5–11). Lines 13–17 update the BestCond. Specifically, an evaluation func-

tion is used to assess whether each new candidate condition set is better 

than the existing best condition set BestCond (line 14). If so, it replaces the 

current BestCond (line 15). Line 18 updates candidateCondSet, which se-

lects k new best condition sets (new beams).  

Once the final BestCond is found, it is evaluated to see if it is signifi-

cantly better than without any condition ( ) using a threshold (line 20). If 



3.4 Rule Induction      79 

yes, a rule will be formed using BestCond and the most frequent (or the 

majority) class of the data covered by BestCond (line 21). If not, NULL is 

returned to indicate that no significant rule is found. 

The evaluation() function (Fig. 3.11) uses the entropy function as in the 

decision tree learning. Other evaluation functions are possible too. Note 

that when BestCond = , it covers every example in D, i.e., D = D .

Function learn-one-rule-1(D)

1 BestCond ; // rule with no condition.

2 candidateCondSet  {BestCond};

3 attributeValuePairs  the set of all attribute-value pairs in D of the form 
(Ai op v), where Ai is an attribute and v is a value or an interval; 

4 while candidateCondSet do

5 newCandidateCondSet ;
6 for each candidate cond in candidateCondSet do

7 for each attribute-value pair a in attributeValuePairs do

8 newCond cond  {a};  

9 newCandidateCondSet newCandidateCondSet  {newCond}
10 endfor

11 endfor

12 remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2};

13 for each candidate newCond in newCandidateCondSet do

14 if  evaluation(newCond, D) > evaluation(BestCond, D) then 

15 BestCond newCond
16 endif

17 endfor 

18 candidateCondSet  the k best members of newCandidateCondSet
according to the results of the evaluation function; 

19 endwhile

20 if evaluation(BestCond, D) – evaluation( , D) > threshold then

21  return the rule: “BestCond c” where is c the majority class of the data 
covered by BestCond

22 else return NULL  
23 endif

Fig. 3.10. The learn-one-rule-1 function 

Function evaluation(BestCond, D)

1 D  the subset of training examples in D covered by BestCond;

2 ||

1 2 )Pr(log)Pr()'(
C

j
jj ccDentropy ;

3 return  – entropy(D’) // since entropy measures impurity.  

Fig. 3.11. The entropy based evaluation function 



80     3 Supervised Learning

Learn-One-Rule-2

In the learn-one-rule-2() function (Fig. 3.12), a rule is first generated and 

then it is pruned. This method starts by splitting the positive and negative 

training data Pos and Neg, into growing and pruning sets. The growing 

sets, GrowPos and GrowNeg, are used to generate a rule, called BestRule.

The pruning sets, PrunePos and PruneNeg are used to prune the rule be-

cause BestRule may overfit the data. Note that PrunePos and PruneNeg are 

actually validation sets discussed in Sects. 3.2.4 and 3.3.1.  

growRule() function: growRule() generates a rule (called BestRule) by 

repeatedly adding a condition to its condition set that maximizes an 

evaluation function until the rule covers only some positive examples in 

GrowPos but no negative examples in GrowNeg. This is basically the same 

as lines 4–17 in Fig. 3.10, but without beam search (i.e., only the best rule 

is kept in each iteration). Let the current partially developed rule be R:

R:  av1, .., avk class

where each avj is a condition (an attribute-value pair). By adding a new 

condition avk+1, we obtain the rule R+: av1, .., avk, avk+1 class. The evalua-

tion function for R+ is the following information gain criterion (which is 

different from the gain function used in decision tree learning): 

00

0

11

1

1 22 loglog),(
np

p

np

p
pRRgain (10)

where p0 (respectively, n0) is the number of positive (negative) examples 

covered by R in Pos (Neg), and p1 (n1) is the number of positive (negative) 

examples covered by R+ in Pos (Neg). The GrowRule() function simply re-

turns the rule R+ that maximizes the gain.  

PruneRule() function: To prune a rule, we consider deleting every subset 

of conditions from the BestRule, and choose the deletion that maximizes:  

Function learn-one-rule-2(Pos, Neg, class)
1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg)

2 BestRule  GrowRule(GrowPos, GrowNeg, class) // grow a new rule 

3 BestRule  PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule 
4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then

5 return NULL 

6 endif

7 return BestRule

Fig. 3.12. The learn-one-rule-2() function 



3.5 Classification Based on Associations      81 

,),,(
np

np
PruneNegPrunePosBestRulev (11)

where p (respectively n) is the number of examples in PrunePos (Prune-

Neg) covered by the current rule (after a deletion).  

3.4.3 Discussion 

Separate-and-Conquer vs. Divide-and-Conquer: Decision tree learning 

is said to use the divide-and-conquer strategy. At each step, all attributes 

are evaluated and one is selected to partition/divide the data into m disjoint 

subsets, where m is the number of values of the attribute. Rule induction 

discussed in this section is said to use the separate-and-conquer strategy, 

which evaluates all attribute-value pairs (conditions) (which are much lar-

ger in number than the number of attributes) and selects only one. Thus, 

each step of divide-and-conquer expands m rules, while each step of sepa-

rate-and-conquer expands only one rule. Due to both effects, the separate-

and-conquer strategy is much slower than the divide-and-conquer strategy.  

Rule Understandability: If-then rules are easy to understand by human 

users. However, a word of caution about rules generated by sequential 

covering is in order. Such rules can be misleading because the covered 

data are removed after each rule is generated. Thus the rules in the rule list 

are not independent of each other. A rule r may be of high quality in the 

context of the data D from which r was generated. However, it may be a 

weak rule with a very low accuracy (confidence) in the context of the 

whole data set D (D D) because many training examples that can be 

covered by r have already been removed by rules generated before r. If 

you want to understand the rules and possibly use them in some real-world 

tasks, you should be aware of this fact.  

3.5 Classification Based on Associations 

In Sect. 3.2, we showed that a decision tree can be converted to a set of 

rules, and in Sect. 3.4, we saw that a set of rules may also be found directly 

for classification. It is thus only natural to expect that association rules, in 

particular class association rules (CAR), may be used for classification 

too. Yes, indeed! In fact, normal association rules can be employed for 

classification as well as we will see in Sect. 3.5.3. CBA, which stands for 

Classification Based on Associations, is the first reported system that uses 



82     3 Supervised Learning

association rules for classification [343]. In this section, we describe three 

approaches to employing association rules for classification:  

1. Using class association rules for classification directly.  

2. Using class association rules as features or attributes. 

3. Using normal (or classic) association rules for classification.  

The first two approaches can be applied to tabular data or transactional 

data. The last approach is usually employed for transactional data only. All 

these methods are useful in the Web environment as many types of Web 

data are in the form of transactions, e.g., search queries issued by users, 

and Web pages clicked by visitors. Transactional data sets are difficult to 

handle by traditional classification techniques, but are very natural for as-

sociation rules. Below, we describe the three approaches in turn. We 

should note that various sequential rules can be used for classification in 

similar ways as well if sequential data sets are involved.

3.5.1 Classification Using Class Association Rules 

Recall that a class association rule (CAR) is an association rule with only a 

class label on the right-hand side of the rule as its consequent (Sect. 2.5). 

For instance, from the data in Table 3.1, the following rule can be found: 

Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3], 

which was also a rule from the decision tree in Fig. 3.3. In fact, there is no 

difference between rules from a decision tree (or a rule induction system) 

and CARs if we consider only categorical (or discrete) attributes (more on 

this later). The differences are in the mining processes and the final rule 

sets. CAR mining finds all rules in data that satisfy the user-specified 

minimum support (minsup) and minimum confidence (minconf) con-

straints. A decision tree or a rule induction system finds only a subset of

the rules (expressed as a tree or a list of rules) for classification. 

Example 13: Recall that the decision tree in Fig. 3.3 gives the following 

three rules:

Own_house = true  Class =Yes  [sup=6/15, conf=6/6] 

Own_house = false, Has_job = true  Class=Yes [sup=3/15, conf=3/3] 

Own_house = false, Has_job = false  Class=No [sup=6/15, conf=6/6]. 

However, there are many other rules that exist in data, e.g.,  

Age = young, Has_job = true  Class=Yes [sup=2/15, conf=2/2] 

Age = young, Has_job = false  Class=No [sup=3/15, conf=3/3] 

Credit_rating = fair  Class=No [sup=4/15, conf=4/5] 



3.5 Classification Based on Associations      83 

and many more, if we use minsup = 2/15 = 13.3% and minconf = 70%. 

In many cases, rules that are not in the decision tree (or a rule list) may 

be able to perform classification more accurately. Empirical comparisons 

reported by several researchers show that classification using CARs can 

perform more accurately on many data sets than decision trees and rule in-

duction systems (see Bibliographic Notes for references).  

 The complete set of rules from CAR mining is also beneficial from a 

rule usage point of view. In some applications, the user wants to act on 

some interesting rules. For example, in an application for finding causes of 

product problems, more rules are preferred to fewer rules because. With 

more rules, the user is more likely to find rules that indicate causes of the 

problems. Such rules may not be generated by a decision tree or a rule in-

duction system. A deployed data mining system based on CARs is reported 

in [352]. We should, however, also bear in mind of the following:  

1. Decision tree learning and rule induction do not use the minsup or min-

conf constraint. Thus, some rules that they find can have very low sup-

ports, which, of course, are likely to be pruned because the chance that 

they overfit the training data is high. Although we can set a low minsup 

for CAR mining, it may cause combinatorial explosion. In practice, in 

addition to minsup and minconf, a limit on the total number of rules to 

be generated may be used to further control the CAR generation proc-

ess. When the number of generated rules reaches the limit, the algorithm 

stops. However, with this limit, we may not be able to generate long 

rules (with many conditions). Recall that the Apriori algorithm works in 

a level-wise fashion, i.e., short rules are generated before long rules. In 

some applications, this might not be an issue as short rules are often pre-

ferred and are sufficient for classification or for action. Long rules nor-

mally have very low supports and tend to overfit the data. However, in 

some other applications, long rules can be useful.  

2. CAR mining does not use continuous (numeric) attributes, while deci-

sion trees deal with continuous attributes naturally. Rule induction can 

use continuous attributes as well. There is still no satisfactory method to 

deal with such attributes directly in association rule mining. Fortunately, 

many attribute discretization algorithms exist that can automatically dis-

cretize the value range of a continuous attribute into suitable intervals 

[e.g., 151, 172], which are then considered as discrete values.  

Mining Class Association Rules for Classification 

There are many techniques that use CARs to build classifiers. Before de-

scribing them, let us first discuss some issues related to CAR mining for 



84     3 Supervised Learning

classification. Since a CAR mining algorithm has been discussed in Sect. 

2.5, we will not repeat it here.

Rule Pruning: CAR rules are highly redundant, and many of them are not 

statistically significant (which can cause overfitting). Rule pruning is thus 

needed. The idea of pruning CARs is basically the same as that in decision 

tree building or rule induction. Thus, we will not discuss it further (see 

[343, 328] for some of the pruning methods).  

Multiple Minimum Class Supports: As discussed in Sect. 2.5.3, a single 

minsup is inadequate for mining CARs because many practical classifica-

tion data sets have uneven class distributions, i.e., some classes cover a 

large proportion of the data, while others cover only a very small propor-

tion (which are called rare or infrequent classes).

Example 14: Suppose we have a dataset with two classes, Y and N. 99% of 

the data belong to the Y class, and only 1% of the data belong to the N

class. If we set minsup = 1.5%, we will not find any rule for class N. To 

solve the problem, we need to lower down the minsup. Suppose we set 

minsup = 0.2%. Then, we may find a huge number of overfitting rules for 

class Y because minsup = 0.2% is too low for class Y.

Multiple minimum class supports can be applied to deal with the prob-

lem. We can assign a different minimum class support minsupi for each 

class ci, i.e., all the rules of class ci must satisfy minsupi. Alternatively, we 

can provide one single total minsup, denoted by t_minsup, which is then 

distributed to each class according to the class distribution: 

minsupi = t_minsup sup(ci) (12)

where sup(ci) is the support of class ci in training data. The formula gives 

frequent classes higher minsups and infrequent classes lower minsups.  

Parameter Selection: The parameters used in CAR mining are the mini-

mum supports and the minimum confidences. Note that a different mini-

mum confidence may also be used for each class. However, minimum con-

fidences do not affect the classification much because classifiers tend to 

use high confidence rules. One minimum confidence is sufficient as long 

as it is not set too high. To determine the best minsupi for each class ci, we 

can try a range of values to build classifiers and then use a validation set to 

select the final value. Cross-validation may be used as well.   

Data Formats: The algorithm for CAR mining given in Sect. 2.5.2 is for 

mining transaction data sets. However, many classification data sets are in 

the table format. As we discussed in Sect. 2.3, a tabular data set can be eas-

ily converted to a transaction data set.  



3.5 Classification Based on Associations      85 

Classifier Building

After all CAR rules are found, a classifier is built using the rules. There are 

many existing methods, which can be grouped into three categories. 

Use the Strongest Rule: This is perhaps the simplest strategy. It simply 

uses CARs directly for classification. For each test instance, it finds the 

strongest rule that covers the instance. Recall that a rule covers an instance 

if the instance satisfies the conditions of the rule. The class of the strongest 

rule is then assigned as the class of the test instance. The strength of a rule 

can be measured in various ways, e.g., based on confidence, 2 test, or a 

combination of both support and confidence values.  

Select a Subset of the Rules to Build a Classifier: The representative 

method of this category is the one used in the CBA system. The method is 

similar to the sequential covering method, but applied to class association 

rules with additional enhancements as discussed above. 

Let the set of all discovered CARs be S. Let the training data set be D.

The basic idea is to select a subset L ( S) of high confidence rules to 

cover the training data D. The set of selected rules, including a default 

class, is then used as the classifier. The selection of rules is based on a total 

order defined on the rules in S.

Definition: Given two rules, ri and rj, ri rj (also called ri precedes rj or ri
has a higher precedence than rj) if

1. the confidence of ri is greater than that of rj, or 

2. their confidences are the same, but the support of ri is greater than 

that of rj, or  

3. both the confidences and supports of ri and rj are the same, but ri is 

generated earlier than rj.

A CBA classifier L is of the form:  

L = <r1, r2, …, rk, default-class>

where ri S, ra rb if b > a. In classifying a test case, the first rule that 

satisfies the case classifies it. If no rule applies to the case, it takes the de-

fault class (default-class). A simplified version of the algorithm for build-

ing such a classifier is given in Fig. 3.13. The classifier is the RuleList.

This algorithm can be easily implemented by making one pass through 

the training data for every rule. However, this is extremely inefficient for 

large data sets. An efficient algorithm that makes at most two passes over 

the data is given in [343].  

Combine Multiple Rules: Like the first approach, this approach does not 

take any additional step to build a classifier. At the classification time, for 



86     3 Supervised Learning

each test instance, the system first finds the subset of rules that covers the 

instance. If all the rules in the subset have the same class, the class is as-

signed to the test instance. If the rules have different classes, the system 

divides the rules into groups according to their classes, i.e., all rules of the 

same class are in the same group. The system then compares the aggre-

gated effects of the rule groups and finds the strongest group. The class la-

bel of the strongest group is assigned to the test instance. To measure the 

strength of each rule group, there again can be many possible techniques. 

For example, the CMAR system uses a weighted 2 measure [328].  

3.5.2 Class Association Rules as Features 

In the above two methods, rules are directly used for classification. In this 

method, rules are used as features to augment the original data or simply 

form a new data set, which is then fed to a traditional classification algo-

rithm, e.g., decision trees or the naïve Bayesian method.  

To use CARs as features, only the conditional part of each rule is 

needed, and it is often treated as a Boolean feature/attribute. If a data in-

stance in the original data contains the conditional part, the value of the 

feature/attribute is set to 1, and otherwise it is set to 0. Several applications 

of this method have been reported [23, 131, 255, 314]. The reason that this 

approach is helpful is that CARs capture multi-attribute or multi-item cor-

relations with class labels. Many classification algorithms do not find such 

correlations (e.g., naïve Bayesian), but they can be quite useful.  

3.5.3 Classification Using Normal Association Rules  

Not only can class association rules be used for classification, but also 

normal association rules. For example, association rules are commonly 

Algorithm CBA(S, D)

1 S = sort(S);   // sorting is done according to the precedence 

2 RuleList = ; // the rule list classifier

3 for each rule r S in sequence do

4 if D  AND r classifies at least one example in D correctly then

5 delete from D all training examples covered by r;
6 add r at the end of RuleList
7 endif 

8 endfor

9 add the majority class as the default class at the end of RuleList

Fig. 3.13. A simple classifier building algorithm 



3.6 Naïve Bayesian Classification      87 

used in e-commerce Web sites for product recommendations, which work 

as follows: When a customer purchases some products, the system will 

recommend him/her some other related products based on what he/she has 

already purchased (see Chap. 12).  

Recommendation is essentially a classification or prediction problem. It 

predicts what a customer is likely to buy. Association rules are naturally 

applicable to such applications. The classification process is the following: 

1. The system first uses previous purchase transactions (the same as mar-

ket basket transactions) to mine association rules. In this case, there are 

no fixed classes. Any item can appear on the left-hand side or the right-

hand side of a rule. For recommendation purposes, usually only one 

item appears on the right-hand side of a rule. 

2. At the prediction (e.g., recommendation) time, given a transaction (e.g., 

a set of items already purchased by a customer), all the rules that cover 

the transaction are selected. The strongest rule is chosen and the item on 

the right-hand side of the rule (i.e., the consequent) is then the predicted 

item and recommended to the user. If multiple rules are very strong, 

multiple items can be recommended.  

This method is basically the same as the “use the strongest rule” method 

described in Sect. 3.5.1. Again, the rule strength can be measured in vari-

ous ways, e.g., confidence, 2 test, or a combination of both support and 

confidence. For example, in [337], the product of support and confidence 

is used as the rule strength. Clearly, the other two methods discussed in 

Sect. 3.5.1 can be applied as well.  

The key advantage of using association rules for recommendation is that 

they can predict any item since any item can be the class item on the right-

hand side. Traditional classification algorithms only work with a single 

fixed class attribute, and are not easily applicable to recommendations.  

Finally, we note that multiple minimum supports (Sect. 2.4) can be of 

significant help. Otherwise, rare items will never be recommended, which 

causes the coverage problem (see Sect. 12.3.3). It is shown in [389] that 

using multiple minimum supports can dramatically increase the coverage.  

3.6 Naïve Bayesian Classification 

Supervised learning can be naturally studied from a probabilistic point of 

view. The task of classification can be regarded as estimating the class 

posterior probabilities given a test example d, i.e.,

Pr(C= cj | d). (13) 



88     3 Supervised Learning

We then see which class cj is more probable. The class with the highest 

probability is assigned to the example d.

Formally, let A1, A2, …, A|A| be the set of attributes with discrete values 

in the data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|.

Given a test example d with observed attribute values a1 through a|A|,

where ai is a possible value of Ai (or a member of the domain of Ai), i.e.,

 d = <A1=a1, ..., A|A|=a|A|>.

The prediction is the class cj such that Pr(C=cj | A1=a1, ..., A|A|=a|A|) is 

maximal. cj is called a maximum a posteriori (MAP) hypothesis.  

By Bayes’ rule, the above quantity (13) can be expressed as 

.

)Pr()|,...,Pr(

)Pr()|,...,Pr(

),...,Pr(

)Pr()|,...,Pr(

),...,|Pr(    

||

1

||||11

||||11

||||11

||||11

||||11

C

k

kkAA

jjAA

AA

jjAA

AAj

cCcCaAaA

cCcCaAaA

aAaA

cCcCaAaA

aAaAcC

(14)

Pr(C=cj) is the class prior probability of cj, which can be estimated from 

the training data. It is simply the fraction of the data in D with class cj.

If we are only interested in making a classification, Pr(A1=a1, ..., 

A|A|=a|A|) is irrelevant for decision making because it is the same for every 

class. Thus, only Pr(A1=a1  ... A|A|=a|A| | C=cj) needs to be computed, 

which can be written as

Pr(A1=a1, ..., A|A|=a|A| | C=cj)

= Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) Pr(A2=a2, ..., A|A|=a|A| | C=cj).
(15)

Recursively, the second term above (i.e., Pr(A2=a2, ..., A|A|=a|A||C=cj)) 

can be written in the same way (i.e., Pr(A2=a2|A3=a3 ..., A|A|=a|A|, C=cj)

Pr(A3=a3, ..., A|A|=a|A||C=cj)), and so on. However, to further our derivation, 

we need to make an important assumption.  

Conditional independence assumption: We assume that all attributes are 

conditionally independent given the class C = cj. Formally, we assume, 

Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj) (16) 

and similarly for A2 through A|A|. We then obtain

||

1

||||11 )|Pr()|,...,Pr(   
A

i

jiijAA cCaAcCaAaA (17)



3.6 Naïve Bayesian Classification      89 

.

)|Pr()Pr(

)|Pr()Pr(

),...,|Pr(   

||

1

||

1

||

1

||||11

C

k

A

i

kiik

A

i

jiij

AAj

cCaAcC

cCaAcC

aAaAcC

(18)

Next, we need to estimate the prior probabilities Pr(C=cj) and the condi-

tional probabilities Pr(Ai=ai | C=cj) from the training data, which are 

straightforward.

set data in the examples ofnumber  total

 class of examples ofnumber 
)Pr(

j

j

c
cC (19)

.
 class of examples ofnumber 

 class and   with examples ofnumber 
)|Pr(

j

jii

jii
c

caA
cCaA (20)

If we only need a decision on the most probable class for each test in-

stance, we only need the numerator of Equation (18) since the denominator 

is the same for every class. Thus, given a test case, we compute the follow-

ing to decide the most probable class for the test case:  

||

1

)|Pr()Pr(maxarg   
A

i

jiij
c

cCaAcCc
j

(21)

Example 15: Suppose that we have the training data set in Fig. 3.14, which 

has two attributes A and B, and the class C. We can compute all the prob-

ability values required to learn a naïve Bayesian classifier.  

A B C 
m b t 

m s t 

g q t 

h s t 

g q t 

g q f 

g s f 

h b f 

h q f 

m b f 

Fig. 3.14. An example of a training data set 



90     3 Supervised Learning

Pr(C = t) = 1/2,         Pr(C= f) = 1/2 

Pr(A=m | C=t) = 2/5  Pr(A=g | C=t) = 2/5  Pr(A=h | C=t) = 1/5 
Pr(A=m | C=f) = 1/5  Pr(A=g | C=f) = 2/5  Pr(A=h | C=f) =2/5 

Pr(B=b | C=t) = 1/5  Pr(B=s | C=t) = 2/5  Pr(B=q | C=t) = 2/5 

Pr(B=b | C=f) = 2/5  Pr(B=s | C=f) = 1/5  Pr(B=q | C=f) = 2/5 

Now we have a test example:  

A = m B = q C = ? 

We want to know its class. Equation (21) is applied. For C = t, we have 

.
25

2

5

2

5

2

2

1
)|Pr()Pr(   

2

1j

jj tCaAtC

For class C = f, we have 

.
25

1

5

2

5

1

2

1
)|Pr()Pr(   

2

1j

jj fCaAfC

Since C = t is more probable, t is the predicted class of the test case.   

It is easy to see that the probabilities (i.e., Pr(C=cj) and Pr(Ai=ai | C=cj)) 
required to build a naïve Bayesian classifier can be found in one scan of 

the data. Thus, the algorithm is linear in the number of training examples, 

which is one of the great strengths of the naïve Bayes, i.e., it is extremely 

efficient. In terms of classification accuracy, although the algorithm makes 

the strong assumption of conditional independence, several researchers 

have shown that its classification accuracies are surprisingly strong. See 

experimental comparisons of various techniques in [148, 285, 349].  

To learn practical naïve Bayesian classifiers, we still need to address 

some additional issues: how to handle numeric attributes, zero counts, and 

missing values. Below, we deal with each of them in turn.  

Numeric Attributes: The above formulation of the naïve Bayesian learn-

ing assumes that all attributes are categorical. However, most real-life data 

sets have numeric attributes. Therefore, in order to use the naïve Bayeisan 

algorithm, each numeric attribute needs to be discretized into intervals. 

This is the same as for class association rule mining. Existing discretiza-

tion algorithms in [e.g., 151, 172] can be used.   

Zero Counts: It is possible that a particular attribute value in the test set 

never occurs together with a class in the training set. This is problematic 

because it will result in a 0 probability, which wipes out all the other prob-

abilities Pr(Ai=ai | C=cj) when they are multiplied according to Equation 



3.7 Naïve Bayesian Text Classification      91 

(21) or Equation (18). A principled solution to this problem is to incorpo-

rate a small-sample correction into all probabilities.  

Let nij be the number of examples that have both Ai = ai and C = cj. Let nj
be the total number of examples with C=cj in the training data set. The un-

corrected estimate of Pr(Ai=ai | C=cj) is nij/nj, and the corrected estimate is  

ij

ij

jii
mn

n
cCaA )|Pr( (22)

where mi is the number of values of attribute Ai (e.g., 2 for a Boolean at-

tribute), and is a multiplicative factor, which is commonly set to = 1/n,

where n is the total number of examples in the training set D [148, 285]. 

When = 1, we get the well known Laplace’s law of succession [204]. 

The general form of correction (also called smoothing) in Equation (22) is 

called the Lidstone’s law of succession [330]. Applying the correction =

1/n, the probabilities of Example 15 are revised. For example,  

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396 

Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208. 

Missing Values: Missing values are ignored, both in computing the prob-

ability estimates in training and in classifying test instances.  

3.7 Naïve Bayesian Text Classification 

Text classification or categorization is the problem of learning classifica-

tion models from training documents labeled with pre-defined classes. 

That learned models are then used to classify future documents. For exam-

ple, we have a set of news articles of three classes or topics, Sport, Politics,

and Science. We want to learn a classifier that is able to classify future 

news articles into these classes.   

Due to the rapid growth of online documents in organizations and on the 

Web, automated document classification is an important problem. Al-

though the techniques discussed in the previous sections can be applied to 

text classification, it has been shown that they are not as effective as the 

methods presented in this section and in the next two sections. In this sec-

tion, we study a naïve Bayesian learning method that is specifically formu-

lated for texts, which makes use of text specific characteristics. However, 

the ideas are similar to those in Sect. 3.6. Below, we first present a prob-

abilistic framework for texts, and then study the naïve Bayesian equations 

for their classification. There are several slight variations of this model. 

This section is mainly based on the formulation given in [365].  



92     3 Supervised Learning

3.7.1  Probabilistic Framework 

The naïve Bayesian learning method for text classification is derived based 

on a probabilistic generative model. It assumes that each document is 

generated by a parametric distribution governed by a set of hidden pa-

rameters. Training data is used to estimate these parameters. The parame-

ters are then applied to classify each test document using Bayes’ rule by 

calculating the posterior probability that the distribution associated with 

a class (represented by the unobserved class variable) would have gener-

ated the given document. Classification then becomes a simple matter of 

selecting the most probable class.  

The generative model is based on two assumptions:  

1. The data (or the text documents) are generated by a mixture model.  

2. There is one-to-one correspondence between mixture components and 

document classes.   

A mixture model models the data with a number of statistical distribu-

tions. Intuitively, each distribution corresponds to a data cluster and the pa-

rameters of the distribution provide a description of the corresponding 

cluster. Each distribution in a mixture model is also called a mixture 

component (the distribution can be of any kind). Figure 3.15 plots two 

probability density functions of a mixture of two Gaussian distributions 

that generate a 1-dimensional data set of two classes, one distribution per 

class, whose parameters (denoted by i) are the mean ( i) and the standard 

deviation ( i), i.e., i = ( i, i).

Fig. 3.15. Probability density functions of the two distributions in the mixture 
model  

Let the number of mixture components (or distributions) in a mixture 

model be K, and the jth distribution have the parameters j. Let  be the 

set of parameters of all components,  = { 1, 2, …, K, 1, 2, …, K},

where j is the mixture weight (or mixture probability) of the mixture 

component j and j is the set of parameters of component j. The mixture 

class 1  class 2 



3.7 Naïve Bayesian Text Classification      93 

weights are subject to the constraint .1
1

K

j j  The meaning of mixture 

weights (or probabilities) will be clear below.  

Let us see how the mixture model generates a collection of documents. 

Recall the classes C in our classification problem are c1, c2, …, c|C|. Since 

we assume that there is one-to-one correspondence between mixture com-

ponents and classes, each class corresponds to a mixture component. Thus 

|C| = K, and the jth mixture component can be represented by its corre-

sponding class cj and is parameterized by j. The mixture weights are class 

prior probabilities, i.e., j = Pr(cj| ). The mixture model generates each 

document di by:  

1. first selecting a mixture component (or class) according to class prior 

probabilities (i.e., mixture weights), j = Pr(cj| );

2. then having this selected mixture component (cj) generate a document di
according to its parameters, with distribution Pr(di|cj; ) or more pre-

cisely Pr(di|cj; j).

The probability that a document di is generated by the mixture model can 

be written as the sum of total probability over all mixture components. 

Note that to simplify the notation, we use cj instead of C = cj as in the pre-

vious section:  

). ;|Pr()|Pr()|Pr(
||

1

C

j

jiji cdcd (23)

Since each document is attached with its class label, we can now derive the 

naïve Bayesian model for text classification. Note that in the above prob-

ability expressions, we include  to represent their dependency on  as we 

employ a generative model. In an actual implementation, we need not be 

concerned with , i.e., it can be ignored.  

3.7.2  Naïve Bayesian Model 

A text document consists of a sequence of sentences, and each sentence 

consists of a sequence of words. However, due to the complexity of model-

ing word sequence and their relationships, several assumptions are made in 

the derivation of the Bayesian classifier. That is also why we call the final 

classification model, naïve Bayesian classification.  

Specifically, the naïve Bayesian classification treats each document as a 

“bag” of words. The generative model makes the following assumptions: 



94     3 Supervised Learning

1. Words of a document are generated independently of the context, that is, 

independently of the other words in the same document given the class 

label. This is the familiar naïve Bayesian assumption used before.   

2. The probability of a word is independent of its position in the document. 

For example, the probability of seeing the word “student” in the first po-

sition of the document is the same as seeing it in any other position. The 

document length is chosen independent of its class.  

With these assumptions, each document can be regarded as generated by a 

multinomial distribution. In other words, each document is drawn from a 

multinomial distribution of words with as many independent trials as the 

length of the document. The words are from a given vocabulary V = {w1,

w2, …, w|V|}, |V| being the number of words in the vocabulary. To see why 

this is a multinomial distribution, we give a short introduction to the multi-

nomial distribution.  

A multinomial trial is a process that can result in any of k outcomes, 

where k  2. Each outcome of a multinomial trial has a probability of oc-

currence. The probabilities of the k outcomes are denoted by p1, p2, …, pk.

For example, the rolling of a die is a multinomial trial, with six possible 

outcomes 1, 2, 3, 4, 5, 6. For a fair die, p1 = p2 = … = pk= 1/6. 

Now assume n independent trials are conducted, each with the k possi-

ble outcomes and the k probabilities, p1, p2, …, pk. Let us number the out-

comes 1, 2, 3, …, k. For each outcome, let Xt denote the number of trials 

that result in that outcome. Then, X1, X2, …, Xk are discrete random vari-

ables. The collection of X1, X2, …, Xk is said to have the multinomial dis-

tribution with parameters, n, p1, p2, …, pk.

In our context, n corresponds to the length of a document, and the out-

comes correspond to all the words in the vocabulary V (k = |V|). p1, p2, …, 

pk correspond to the probabilities of occurrence of the words in V in a 

document, which are Pr(wt|cj; ). Xt is a random variable representing the 

number of times that word wt appears in a document. We can thus directly 

apply the probability function of the multinomial distribution to find the 

probability of a document given its class (including the probability of 

document length, Pr(|di|), which is assumed to be independent of class):  

||

1 !

);|Pr(
|!||)Pr(|);|Pr(

V

t ti

N

jt

iiji
N

cw
ddcd

ti

(24)

where Nti is the number of times that word wt occurs in document di and

||
||

1

i

V

t

ti dN , and .1);|Pr(
||

1

V

t

jt cw (25)



3.7 Naïve Bayesian Text Classification      95 

The parameters j of the generative component for each class cj are the 

probabilities of all words wt in V, written as Pr(wt|cj; ), and the probabili-

ties of document lengths, which are the same for all classes (or mixture 

components) due to our assumption.  

Parameter Estimation: The parameters can be estimated from the train-

ing data D = {D1, D2, …, D|C|}, where Dj is the subset of data for class cj
(recall |C| is the number of classes). The vocabulary V is the set of all 

distinctive words in D. Note that we do not need to estimate the probability 

of each document length as it is not used in our final classifier. The esti-

mate of  is written as ˆ . The parameters are estimated based on empiri-

cal counts.

The estimated probability of word wt given class cj is simply the number 

of times that wt occurs in the training data Dj (of class cj) divided by the to-

tal number of word occurrences in the training data for that class:  

.
)|Pr(

)|Pr(
)ˆ;|Pr(

||

1

||

1

||

1

V

s

D

i ijsi

D

i ijti

jt

dcN

dcN
cw (26)

In Equation (26), we do not use Dj explicitly. Instead, we include Pr(cj|di)

to achieve the same effect because Pr(cj|di) = 1 for each document in Dj

and Pr(cj|di) = 0 for documents of other classes. Again, Nti is the number of 

times that word wt occurs in document di.

In order to handle 0 counts for infrequently occurring words that do not 

appear in the training set, but may appear in the test set, we need to smooth 

the probability to avoid probabilities of 0 or 1. This is the same problem as 

in Sect. 3.6. The standard way of doing this is to augment the count of each 

distinctive word with a small quantity  (0  1) or a fraction of a word 

in both the numerator and denominator. Thus, any word will have at least a 

very small probability of occurrence.  

.
)|Pr(||

)|Pr(
)ˆ;|Pr(

||

1

||

1

||

1

V

s

D

i ijsi

D

i ijti

jt

dcNV

dcN
cw (27)

This is called the Lidstone smoothing (Lidsone’s law of succession). 

When = 1, the smoothing is known as the Laplace smoothing. Many 

experiments have shown that < 1 works better for text classification [7]. 

The best value for a data set can be found through experiments using a 

validation set or through cross-validation.  

Finally, class prior probabilities, which are mixture weights j, can be 

easily estimated using the training data as well.  



96     3 Supervised Learning

.
||

)|Pr(
)ˆ|Pr(

||

1

D

dc
c

D

i ij

j
(28)

Classification: Given the estimated parameters, at the classification time, 

we need to compute the probability of each class cj for the test document 

di. That is, we compute the probability that a particular mixture component 

cj generated the given document di. Using Bayes rule and Equations (23), 

(24), (27), and (28), we have 

,
)ˆ;|Pr()ˆ|Pr(

)ˆ;|Pr()ˆ|Pr(
                   

)ˆ|Pr(

)ˆ;|Pr()ˆ|Pr(
)ˆ;|Pr(

||

1

||

1 ,

||

1 ,

C

r

d

k rkdr

d

k jkdj

i

jij

ij

i

i

i

i

cwc

cwc

d

cdc
dc (29)

where wdi,k
 is the word in position k of document di (which is the same as 

using wt and Nti). If the final classifier is to classify each document into a 

single class, the class with the highest posterior probability is selected: 

).ˆ;|Pr(maxarg ijCc dc
j

(30)

3.7.3 Discussion 

Most assumptions made by naïve Bayesian learning are violated in prac-

tice. For example, words in a document are clearly not independent of each 

other. The mixture model assumption of one-to-one correspondence be-

tween classes and mixture components may not be true either because a 

class may contain documents from multiple topics. Despite such viola-

tions, researchers have shown that naïve Bayesian learning produces very 

accurate models.  

Naïve Bayesian learning is also very efficient. It scans the training data 

only once to estimate all the probabilities required for classification. It can 

be used as an incremental algorithm as well. The model can be updated 

easily as new data comes in because the probabilities can be conveniently 

revised. Naïve Bayesian learning is thus widely used for text classification.  

The naïve Bayesian formulation presented here is based on a mixture of 

multinomial distributions. There is also a formulation based on multi-

variate Bernoulli distributions in which each word in the vocabulary is a 

binary feature, i.e., it either appears or does not appear in the document. 



3.8 Support Vector Machines      97 

Thus, it does not consider the number of times that a word occurs in a 

document. Experimental comparisons show that multinomial formulation 

consistently produces more accurate classifiers [365].  

3.8 Support Vector Machines 

Support vector machines (SVM) is another type of learning system 

[525], which has many desirable qualities that make it one of most popular 

algorithms. It not only has a solid theoretical foundation, but also performs 

classification more accurately than most other algorithms in many applica-

tions, especially those applications involving very high dimensional data. 

For instance, it has been shown by several researchers that SVM is perhaps 

the most accurate algorithm for text classification. It is also widely used in 

Web page classification and bioinformatics applications.  

In general, SVM is a linear learning system that builds two-class clas-

sifiers. Let the set of training examples D be

{(x1, y1), (x2, y2), …, (xn, yn)},

where xi = (xi1, xi2, …, xir) is a r-dimensional input vector in a real-valued 

space X r, yi is its class label (output value) and yi  {1, 1}. 1 de-

notes the positive class and 1 denotes the negative class. Note that we use 

slightly different notations in this section. For instance, we use y instead of 

c to represent a class because y is commonly used to represent classes in 

the SVM literature. Similarly, each data instance is called an input vector

and denoted by a bold face letter. In the following, we use bold face letters 

for all vectors.

To build a classifier, SVM finds a linear function of the form  

f(x) = w  x  + b (31)

so that an input vector xi is assigned to the positive class if f(xi)  0, and to 

the negative class otherwise, i.e.,  

0if1

0if1

b

b
y

i

i

i
xw

xw
(32)

Hence, f(x) is a real-valued function f: X r . w = (w1, w2, …, wr)
r is called the weight vector. b  is called the bias. w  x is the dot

product of w and x (or Euclidean inner product). Without using vector 

notation, Equation (31) can be written as: 

f(x1, x2, …, xr) = w1x1+w2x2 + … + wrxr + b,



98     3 Supervised Learning

where xi is the variable representing the ith coordinate of the vector x. For 

convenience, we will use the vector notation from now on.  

In essence, SVM finds a hyperplane

w  x  + b = 0 (33)

that separates positive and negative training examples. This hyperplane is 

called the decision boundary or decision surface.

Geometrically, the hyperplane w  x  + b = 0 divides the input space 

into two half spaces: one half for positive examples and the other half for 

negative examples. Recall that a hyperplane is commonly called a line in a 

2-dimensional space and a plane in a 3-dimensional space.

Fig. 3.16(A) shows an example in a 2-dimensional space. Positive in-

stances (also called positive data points or simply positive points) are rep-

resented with small filled rectangles, and negative examples are repre-

sented with small empty circles. The thick line in the middle is the decision 

boundary hyperplane (a line in this case), which separates positive (above 

the line) and negative (below the line) data points. Equation (31), which is 

also called the decision rule of the SVM classifier, is used to make classi-

fication decisions on test instances.  

 (A) (B) 

Fig. 3.16. (A) A linearly separable data set and (B) possible decision boundaries 

Fig. 3.16(A) raises two interesting questions: 

1. There are an infinite number of lines that can separate the positive and 

negative data points as illustrated by Fig. 3.16(B). Which line should we 

choose?

2. A hyperplane classifier is only applicable if the positive and negative 

data can be linearly separated. How can we deal with nonlinear separa-

tions or data sets that require nonlinear decision boundaries?  

The SVM framework provides good answers to both questions. Briefly, for 

question 1, SVM chooses the hyperplane that maximizes the margin (the 

w  x  + b = 0 

y = 1 

y = 1



3.8 Support Vector Machines      99 

gap) between positive and negative data points, which will be defined for-

mally shortly. For question 2, SVM uses kernel functions. Before we dive 

into the details, we should note that SVM requires numeric data and only 

builds two-class classifiers. At the end of the section, we will discuss how 

these limitations may be addressed.   

3.8.1  Linear SVM: Separable Case 

This sub-section studies the simplest case of linear SVM. It is assumed that 

the positive and negative data points are linearly separable.  

From linear algebra, we know that in w  x  + b = 0, w defines a direc-

tion perpendicular to the hyperplane (see Fig. 3.17). w is also called the 

normal vector (or simply normal) of the hyperplane. Without changing 

the normal vector w, varying b moves the hyperplane parallel to itself. 

Note also that w  x  + b = 0 has an inherent degree of freedom. We can 

rescale the hyperplane to w  x  + b = 0 for + (positive real num-

bers) without changing the function/hyperplane.   

Fig. 3.17. Separating hyperplanes and margin of SVM: Support vectors are circled 

Since SVM maximizes the margin between positive and negative data 

points, let us find the margin. Let d+ (respectively d ) be the shortest dis-

tance from the separating hyperplane ( w  x  + b = 0) to the closest posi-

tive (negative) data point. The margin of the separating hyperplane is 

d++d . SVM looks for the separating hyperplane with the largest margin, 

which is also called the maximal margin hyperplane, as the final deci-

sion boundary. The reason for choosing this hyperplane to be the decision 

boundary is because theoretical results from structural risk minimization in 

w  x + b = 0 

y = 1 

y = 1

w

||||

||

w

b

H+: w  x  + b = 1 

H : w  x  + b = 1

x

x
+

d d+

margin



100     3 Supervised Learning

computational learning theory show that maximizing the margin minimizes 

the upper bound of classification errors.  

Let us consider a positive data point (x+, 1) and a negative (x , 1) that 

are closest to the hyperplane <w  x> + b = 0. We define two parallel hyper-

planes, H+ and H , that pass through x+ and x  respectively. H+ and H  are 

also parallel to <w  x> + b = 0. We can rescale w and b to obtain

H+: w  x
+  + b = 1 (34)

H : w  x  + b = 1 (35)

such that w  xi  + b  1  if yi = 1 

w  xi  + b  if yi = 1,

which indicate that no training data fall between hyperplanes H+ and H .

Now let us compute the distance between the two margin hyperplanes

H+ and H . Their distance is the margin (d+ + d ). Recall from vector space 

in linear algebra that the (perpendicular) Euclidean distance from a point xi
to a hyperplane w  x  + b = 0 is:

||||

||

w

xw bi , (36)

where ||w|| is the Euclidean norm of w,

22

2

2

1 ...|||| rwwwwww (37)

To compute d+, instead of computing the distance from x+ to the separat-

ing hyperplane w  x  + b = 0, we pick up any point xs on w  x  + b = 0 

and compute the distance from xs to w  x
+  + b = 1 by applying Equation 

36 and noticing that w  xs  + b = 0, 

||||

1

||||

|1|

ww

xw s b
d (38)

Likewise, we can compute the distance of xs to w  x
+  + b = 1 to obtain 

d  = 1/||w||. Thus, the decision boundary w  x  + b = 0 lies half way be-

tween H+ and H . The margin is thus 

||||

2

w
ddmargin (39)

In fact, we can compute the margin in many ways. For example, it can 

be computed by finding the distances from the origin to the three hyper-

planes, or by projecting the vector (x2 x1
+
) to the normal vector w.



3.8 Support Vector Machines      101 

Since SVM looks for the separating hyperplane that maximizes the mar-

gin, this gives us an optimization problem. Since maximizing the margin is 

the same as minimizing ||w||2/2 = w  w /2. We have the following linear 

separable SVM formulation. 

Definition (Linear SVM: Separable Case): Given a set of linearly sepa-

rable training examples,  

D = {(x1, y1), (x2, y2), …, (xn, yn)},

learning is to solve the following constrained minimization problem, 

niby ii  ..., 2, 1,   ,1)(  :Subject to

2
   :Minimize

xw

ww

(40)

Note that the constraint niby ii  ..., 2, 1,   ,1( xw  summarizes:  

w  xi  + b  1  for yi = 1 

w  xi  + b  for yi = 1.

Solving the problem (40) will produce the solutions for w and b, which in 

turn give us the maximal margin hyperplane w  x  + b = 0 with the mar-

gin 2/||w||.  

A full description of the solution method requires a significant amount 

of optimization theory, which is beyond the scope of this book. We will 

only use those relevant results from optimization without giving formal 

definitions, theorems or proofs.  

Since the objective function is quadratic and convex and the constraints 

are linear in the parameters w and b, we can use the standard Lagrangian 

multiplier method to solve it.  

Instead of optimizing only the objective function (which is called un-

constrained optimization), we need to optimize the Lagrangian of the prob-

lem, which considers the constraints at the same time. The need to consider 

constraints is obvious because they restrict the feasible solutions. Since our 

inequality constraints are expressed using “ ”, the Lagrangian is formed 

by the constraints multiplied by positive Lagrange multipliers and sub-

tracted from the objective function, i.e.,     

]1)([
2

1

1

byL i

n

i

iiP xwww (41)

where i  0 are the Lagrange multipliers.

The optimization theory says that an optimal solution to (41) must sat-

isfy certain conditions, called Kuhn–Tucker conditions, which play a 



102     3 Supervised Learning

central role in constrained optimization. Here, we give a brief introduction 

to these conditions. Let the general optimization problem be 

nibg

f

ii  ..., 2, 1,   ,)(  :Subject to

)(   :Minimize

x

x
(42)

where f is the objective function and gi is a constraint function (which is 

different from yi in (40) as yi is not a function but a class label of 1 or 1). 

The Lagrangian of (42) is,  

)])([)(
1

i

n

i

iiP bgfL xx (43)

An optimal solution to the problem in (42) must satisfy the following 

necessary (but not sufficient) conditions: 

rj
x

L

j

P  ..., ,2 ,1  ,0 (44)

nibg ii  ..., 2, 1,   ,0)(x (45)

nii  ..., 2, 1,   ,0 (46)

nigb iiii  ..., 2, 1,   ,0))(( x (47)

These conditions are called the Kuhn–Tucker conditions. Note that 

(45) is simply the original set of constraints in (42). The condition (47) is 

called the complementarity condition, which implies that at the solution 

point,

If i > 0  then  gi(x) = bi.

If gi(x) > bi  then  i = 0. 

These mean that for active constraints, i > 0, whereas for inactive con-

straints i = 0. As we will see later, they give some very desirable proper-

ties to SVM.

Let us come back to our problem. For the minimization problem (40), 

the Kuhn–Tucker conditions are (48)–(52): 

rjxyw
w

L n

i

ijiij

j

P  ..., ,2 ,1  ,0
1

(48)

0
1

n

i

ii
P y
b

L
(49)

niby ii  ..., 2, 1,   ,01)( xw (50)



3.8 Support Vector Machines      103 

nii  ..., 2, 1,   ,0 (51)

niby iii  ..., 2, 1,   ,0)1)(( xw (52)

Inequality (50) is the original set of constraints. We also note that although 

there is a Lagrange multiplier i for each training data point, the comple-

mentarity condition (52) shows that only those data points on the margin 

hyperplanes (i.e., H+ and H ) can have i > 0 since for them yi( w xi  + b) 

– 1 = 0. These data points are called support vectors, which give the name 

to the algorithm, support vector machines. All the other data points have  

i = 0.

In general, Kuhn–Tucker conditions are necessary for an optimal solu-

tion, but not sufficient. However, for our minimization problem with a 

convex objective function and a set of linear constraints, the Kuhn–Tucker 

conditions are both necessary and sufficient for an optimal solution. 

Solving the optimization problem is still a difficult task due to the ine-

quality constraints. However, the Lagrangian treatment of the convex op-

timization problem leads to an alternative dual formulation of the problem, 

which is easier to solve than the original problem, which is called the pri-

mal problem (LP is called the primal Lagrangian).

The concept of duality is widely used in the optimization literature. The 

aim is to provide an alternative formulation of the problem which is more 

convenient to solve computationally and/or has some theoretical signifi-

cance. In the context of SVM, the dual problem is not only easy to solve 

computationally, but also crucial for using kernel functions to deal with 

nonlinear decision boundaries as we do not need to compute w explicitly 

(which will be clear later).  

Transforming from the primal to its corresponding dual can be done by 

setting to zero the partial derivatives of the Lagrangian (41) with respect to 

the primal variables (i.e., w and b), and substituting the resulting relations 

back into the Lagrangian. This is to simply substitute (48), which is 

rjxyw
n

i

ijiij  ..., ,2 ,1  ,
1

(53)

and (49), which is 

,0
1

n

i

iiy (54)

into the original Lagrangian (41) to eliminate the primal variables, which 

gives us the dual objective function (denoted by LD),



104     3 Supervised Learning

.
2

1

1,1

ji

n

ji

jiji

n

i

iD yyL xx (55)

LD contains only dual variables and must be maximized under the simpler 

constraints, (48) and (49), and i  0. Note that (48) is not needed as it has 

already been substituted into the objective function LD. Hence, the dual of 

the primal Equation (40) is

Maximize: .
2

1

1,1

ji

n

ji

jiji

n

i

iD yyL xx

Subject to: 

. ..., ,2 ,1   ,0

0
1

ni

y

i

n

i

ii

(56)

This dual formulation is called the Wolfe dual. For our convex objec-

tive function and linear constraints of the primal, it has the property that 

the i’s at the maximum of LD gives w and b occurring at the minimum of 

LP (the primal).  

Solving (56) requires numerical techniques and clever strategies beyond 

the scope of this book. After solving (56), we obtain the values for i,

which are used to compute the weight vector w and the bias b using Equa-

tions (48) and (52) respectively. Instead of depending on one support vec-

tor ( i > 0) to compute b, in practice all support vectors are used to com-

pute b, and then take their average as the final value for b. This is because 

the values of i are computed numerically and can have numerical errors. 

Our final decision boundary (maximal margin hyperplane) is 

0byb
svi

iii xxxw
(57)

where sv is the set of indices of the support vectors in the training data.  

Testing: We apply (57) for classification. Given a test instance z, we clas-

sify it using the following:  

.)(
svi

iii bysignbsign zxzw (58)

If (58) returns 1, then the test instance z is classified as positive; otherwise, 

it is classified as negative.  



3.8 Support Vector Machines      105 

3.8.2 Linear SVM: Non-separable Case 

The linear separable case is the ideal situation. In practice, however, the 

training data is almost always noisy, i.e., containing errors due to various 

reasons. For example, some examples may be labeled incorrectly. Fur-

thermore, practical problems may have some degree of randomness. Even 

for two identical input vectors, their labels may be different.  

For SVM to be useful, it must allow noise in the training data. However, 

with noisy data the linear separable SVM will not find a solution because 

the constraints cannot be satisfied. For example, in Fig. 3.18, there is a 

negative point (circled) in the positive region, and a positive point in the 

negative region. Clearly, no solution can be found for this problem.  

Recall that the primal for the linear separable case was: 

. ..., 2, 1,   ,1)(  :Subject to

2
   :Minimize

niby ii xw

ww
(59)

To allow errors in data, we can relax the margin constraints by introduc-

ing slack variables, i (  0) as follows:  

w  xi  + b  1 i for yi = 1 

w  xi  + b 1 + i for yi = 1.

Thus we have the new constraints: 

Subject to:  yi( w  xi  + b)  1 i, i =1, 2, …, n,

i  0,  i =1, 2, …, n.

The geometric interpretation is shown in Fig. 3.18, which has two error 

data points xa and xb (circled) in wrong regions.  

Fig. 3.18. The non-separable case: xa and xb are error data points 

w  x  + b = 0 

||||

||

w

b

w

|||| w

b

xb

|||| w

a

xa



106     3 Supervised Learning

We also need to penalize the errors in the objective function. A natural 

way is to assign an extra cost for errors to change the objective function to  

k
n

i

iC
12

  :Minimize
ww (60)

where C  0 is a user specified parameter. The resulting optimization prob-

lem is still a convex programming problem. k = 1 is commonly used, 

which has the advantage that neither i nor its Lagrangian multipliers ap-

pear in the dual formulation. We only discuss the k = 1 case below.  

The new optimization problem becomes:  

. ..., 2, 1,   ,0                   

 ..., 2, 1,   ,1)(  :Subject to

2
   :Minimize

1

ni

niby

C

i

iii

n

i

i

xw

ww

(61)

This formulation is called the soft-margin SVM. The primal Lagrangian 

(denoted by LP) of this formulation is as follows     

n

i

iiii

n

i

ii

n

i

iP byCL
111

]1)([
2

1
xwww (62)

where i, i  0 are the Lagrange multipliers. The Kuhn–Tucker condi-

tions for optimality are the following:  

rjxyw
w

L n

i

ijiij

j

P  ..., ,2 ,1  ,0
1

(63)

0
1

n

i

ii
P y
b

L
(64)

niC
L

ii

i

P  ..., ,2 ,1   ,0 (65)

niby iii  ..., 2, 1,   ,01)( xw (66)

nii  ..., 2, 1,   ,0 (67)

nii  ..., 2, 1,   ,0 (68)

nii  ..., 2, 1,   ,0 (69)

niby iiii  ..., 2, 1,   ,0)1)(( xw (70)

niii  ..., 2, 1,   ,0 (71)



3.8 Support Vector Machines      107 

As the linear separable case, we then transform the primal to its dual by 

setting to zero the partial derivatives of the Lagrangian (62) with respect to 

the primal variables (i.e., w, b and i), and substituting the resulting rela-

tions back into the Lagrangian. That is, we substitute Equations (63), (64) 

and (65) into the primal Lagrangian (62). From Equation (65), C i i

= 0, we can deduce that i C because i  0. Thus, the dual of (61) is

Maximize: 
ji

n

ji

jiji

n

i

iD yyL xx
1,1 2

1
)(

Subject to: 

. ..., ,2 ,1   ,0

0
1

niC

y

i

n

i

ii

(72)

Interestingly, i and its Lagrange multipliers i are not in the dual and the

objective function is identical to that for the separable case. The only dif-

ference is the constraint i C (inferred from C i i = 0 and i  0). 

The dual problem (72) can also be solved numerically, and the resulting 

i values are then used to compute w and b. w is computed using Equation 

(63) and b is computed using the Kuhn–Tucker complementarity condi-

tions (70) and (71). Since we do not have values for i, we need to get 

around it. From Equations (65), (70) and (71), we observe that if 0 < i < 

C then both i = 0 and .0)1)( iii by xw  Thus, we can use any 

training data point for which 0 < i < C and Equation (70) (with i = 0) to 

compute b:

.
1

1

j

n

i

iii

i

y
y

b xx (73)

Again, due to numerical errors, we can compute all possible b’s and 

then take their average as the final b value.

Note that Equations (65), (70) and (71) in fact tell us more:  

i = 0 yi( w  xi  + b)  1  and i = 0 

0 < i < C yi( w  xi  + b) = 1  and i = 0 

i = C   yi( w  xi  + b)  1  and i  0 

(74)

Similar to support vectors for the separable case, (74) shows one of the 

most important properties of SVM: the solution is sparse in i. Most train-

ing data points are outside the margin area and their i’s in the solution are 

0. Only those data points that are on the margin (i.e., yi( w  xi  + b) = 1, 

which are support vectors in the separable case), inside the margin (i.e., i



108     3 Supervised Learning

= C and yi( w  xi  + b) < 1), or errors are non-zero. Without this sparsity 

property, SVM would not be practical for large data sets.  

The final decision boundary is (we note that many i’s are 0) 

.0
1

byb
n

i

iii xxxw (75)

The decision rule for classification (testing) is the same as the separable 

case, i.e., sign( w  x  + b). We notice that for both Equations (75) and 

(73), w does not need to be explicitly computed. This is crucial for using 

kernel functions to handle nonlinear decision boundaries.  

Finally, we still have the problem of determining the parameter C. The 

value of C is usually chosen by trying a range of values on the training set 

to build multiple classifiers and then to test them on a validation set before 

selecting the one that gives the best classification result on the validation 

set. Cross-validation is commonly used as well. 

3.8.3 Nonlinear SVM: Kernel Functions 

The SVM formulations discussed so far require that positive and negative 

examples can be linearly separated, i.e., the decision boundary must be a 

hyperplane. However, for many real-life data sets, the decision boundaries 

are nonlinear. To deal with nonlinearly separable data, the same formula-

tion and solution techniques as for the linear case are still used. We only 

transform the input data from its original space into another space (usually 

of a much higher dimensional space) so that a linear decision boundary can 

separate positive and negative examples in the transformed space, which is 

called the feature space. The original data space is called the input space.

Thus, the basic idea is to map the data in the input space X to a feature 

space F via a nonlinear mapping ,

).(

:

xx

FX
(76)

After the mapping, the original training data set {(x1, y1), (x2, y2), …, 

(xn, yn)} becomes:

{( (x1), y1), ( (x2), y2), …, ( (xn), yn)}. (77)

The same linear SVM solution method is then applied to F. Figure 3.19 il-

lustrates the process. In the input space (figure on the left), the training ex-

amples cannot be linearly separated. In the transformed feature space (fig-

ure on the right), they can be separated linearly.   



3.8 Support Vector Machines      109 

Fig. 3.19. Transformation from the input space to the feature space 

With the transformation, the optimization problem in (61) becomes 

ni

niby

C

i

iii

n

i

i

 ..., 2, 1,   ,0                   

 ..., 2, 1,   ,1))((  :Subject to

2
   :Minimize

1

xw

ww
(78)

Its corresponding dual is

Maximize: .)()(
2

1

1,1

ji

n

ji

jiji

n

i

iD yyL xx

Subject to: 

. ..., ,2 ,1   ,0

0
1

niC

y

i

n

i

ii

(79)

The final decision rule for classification (testing) is  

by
n

i

iii

1

)()( xx (80)

Example 16: Suppose our input space is 2-dimensional, and we choose the 

following transformation (mapping):  

)2 , ,() ,( 21

2

2

2

121 xxxxxx (81)

The training example ((2, 3), 1) in the input space is transformed to the 

following training example in the feature space:  

 ((4, 9, 8.5), 1).

The potential problem with this approach of transforming the input data 

explicitly to a feature space and then applying the linear SVM is that it 

x

Input space X

x

x

x
x

o

Feature space F

o

o
o

(x)
(x)

(x)
(x)

(x)

(o)

(o) (o)
(o)



110     3 Supervised Learning

may suffer from the curse of dimensionality. The number of dimensions in 

the feature space can be huge with some useful transformations (see be-

low) even with reasonable numbers of attributes in the input space. This 

makes it computationally infeasible to handle.  

Fortunately, explicit transformations can be avoided if we notice that in 

the dual representation both the construction of the optimal hyperplane 

(79) in F and the evaluation of the corresponding decision/classification 

function (80) only require the evaluation of dot products (x) (z)  and 

never the mapped vector (x) in its explicit form. This is a crucial point.  

Thus, if we have a way to compute the dot product (x) (z)  in the 

feature space F using the input vectors x and z directly, then we would not 

need to know the feature vector (x) or even the mapping function  itself.

In SVM, this is done through the use of kernel functions, denoted by K,

K(x, z) = (x) (z) , (82)

which are exactly the functions for computing dot products in the trans-

formed feature space using input vectors x and z. An example of a kernel 

function is the polynomial kernel,

K(x, z) = x z
d. (83)

Example 17: Let us compute this kernel with degree d = 2 in a 2-

dimensional space. Let x = (x1, x2) and z = (z1, z2).

,)()(            

)2()2(            

2            

)(

2222

2222

22

1

22

11

22

1

22

11

2

1

2

1

2
11

2

zx

zx

zz,z,zxx,x,x

zxzxzxzx

zxzx

(84)

where ),2()( 22 1

22

1 xx,x,x  x which shows that the kernel x z
2 is a dot 

product in the transformed feature space. The number of dimensions in the 

feature space is 3. Note that (x) is actually the mapping function used in 

Example 16. Incidentally, in general the number of dimensions in the fea-

ture space for the polynomial kernel function K(x, z) = x z
d is

d

dr 1
,

which is a huge number even with a reasonable number (r) of attributes in 

the input space. Fortunately, by using the kernel function in (83), the huge 

number of dimensions in the feature space does not matter. 

The derivation in (84) is only for illustration purposes. We do not need 

to find the mapping function. We can simply apply the kernel function di-



3.8 Support Vector Machines      111 

rectly. That is, we replace all the dot products (x) (z)  in (79) and (80) 

with the kernel function K(x, z) (e.g., the polynomial kernel in (83)). This 

strategy of directly using a kernel function to replace dot products in the 

feature space is called the kernel trick. We would never need to explicitly 

know what  is.   

However, the question is, how do we know whether a function is a ker-

nel without performing the derivation such as that in (84)? That is, how do 

we know that a kernel function is indeed a dot product in some feature 

space? This question is answered by a theorem called the Mercer’s theo-

rem, which we will not discuss here. See [118] for details.  

It is clear that the idea of kernel generalizes the dot product in the input 

space. The dot product is also a kernel with the feature map being the iden-

tity  

K(x, z) = x z . (85)

Commonly used kernels include 

Polynomial:      dK )(),( zxzx (86)

Gaussian RBF: 2|||| 2

),( zx
zx eK (87)

where , d N, and  > 0.

Summary

SVM is a linear learning system that finds the maximal margin decision 

boundary to separate positive and negative examples. Learning is formu-

lated as a quadratic optimization problem. Nonlinear decision boundaries 

are found via a transformation of the original data to a much higher dimen-

sional feature space. However, this transformation is never explicitly done. 

Instead, kernel functions are used to compute dot products required in 

learning without the need to even know the transformation function.  

Due to the separation of the learning algorithm and kernel functions, 

kernels can be studied independently from the learning algorithm. One can 

design and experiment with different kernel functions without touching the 

underlying learning algorithm.  

SVM also has some limitations:  

1. It works only in real-valued space. For a categorical attribute, we need 

to convert its categorical values to numeric values. One way to do this is 

to create an extra binary attribute for each categorical value, and set the 

attribute value to 1 if the categorical value appears, and 0 otherwise.  



112     3 Supervised Learning

2. It allows only two classes, i.e., binary classification. For multiple class 

classification problems, several strategies can be applied, e.g., one-

against-rest, and error-correcting output coding [138]. 

3. The hyperplane produced by SVM is hard to understand by users. It is 

difficult to picture where the hyperplane is in a high-dimensional space. 

The matter is made worse by kernels. Thus, SVM is commonly used in 

applications that do not required human understanding.  

3.9 K-Nearest Neighbor Learning 

All the previous learning methods learn some kinds of models from the 

data, e.g., decision trees, sets of rules, posterior probabilities, and hyper-

planes. These learning methods are often called eager learning methods as 

they learn models of the data before testing. In contrast, k-nearest neighbor 

(kNN) is a lazy learning method in the sense that no model is learned from 

the training data. Learning only occurs when a test example needs to be 

classified. The idea of kNN is extremely simple and yet quite effective in 

many applications, e.g., text classification.  

It works as follows: Again let D be the training data set. Nothing will be 

done on the training examples. When a test instance d is presented, the al-

gorithm compares d with every training example in D to compute the simi-

larity or distance between them. The k most similar (closest) examples in 

D are then selected. This set of examples is called the k nearest neighbors

of d. d then takes the most frequent class among the k nearest neighbors. 

Note that k = 1 is usually not sufficient for determining the class of d due 

to noise and outliers in the data. A set of nearest neighbors is needed to ac-

curately decide the class. The general kNN algorithm is given in Fig. 3.20. 

Algorithm kNN(D, d, k)
1 Compute the distance between d and every example in D;

2 Choose the k examples in D that are nearest to d, denote the set by P ( D);
3 Assign d the class that is the most frequent class in P (or the majority class).  

Fig. 3.20. The k-nearest neighbor algorithm 

The key component of a kNN algorithm is the distance/similarity func-

tion, which is chosen based on applications and the nature of the data. For 

relational data, the Euclidean distance is commonly used. For text docu-

ments, cosine similarity is a popular choice. We will introduce these dis-

tance functions and many others in the next chapter.  

The number of nearest neighbors k is usually determined by using a 

validation set, or through cross validation on the training data. That is, a 



3.10 Ensemble of Classifiers      113 

range of k values are tried, and the k value that gives the best accuracy on 

the validation set (or cross validation) is selected. Figure 3.21 illustrates 

the importance of choosing the right k.

Example 18: In Fig. 3.21, we have two classes of data, positive (filled 

squares) and negative (empty circles). If 1-nearest neighbor is used, the 

test data point  will be classified as negative, and if 2-nearest neighbors 

are used, the class cannot be decided. If 3-nearest neighbors are used, the 

class is positive as two positive examples are in the 3-nearest neighbors.

Fig. 3.21. An illustration of k-nearest neighbor classification 

Despite its simplicity, researchers have showed that the classification 

accuracy of kNN can be quite strong and in many cases as accurate as 

those elaborated methods. For instance, it is showed in [574] that kNN per-

forms equally well as SVM for some text classification tasks. kNN is also 

very flexible. It can work with any arbitrarily shaped decision boundaries.  

kNN is, however, slow at the classification time. Due to the fact that 

there is no model building, each test instance is compared with every train-

ing example at the classification time, which can be quite time consuming 

especially when the training set D and the test set are large. Another disad-

vantage is that kNN does not produce an understandable model. It is thus 

not applicable if an understandable model is required in the application.

3.10 Ensemble of Classifiers  

So far, we have studied many individual classifier building techniques. A 

natural question to ask is: can we build many classifiers and then combine 

them to produce a better classifier? Yes, in many cases. This section de-

scribes two well known ensemble techniques, bagging and boosting. In 

both these methods, many classifiers are built and the final classification 

decision for each test instance is made based on some forms of voting of 

the committee of classifiers.

1-nearst neighbor 

2-nearst neighbor 

3-nearst neighbor 



114     3 Supervised Learning

3.10.1 Bagging 

Given a training set D with n examples and a base learning algorithm, bag-

ging (for Bootstrap Aggregating) works as follows [63]:  

Training:

1. Create k bootstrap samples S1, S2, and Sk. Each sample is produced by 

drawing n examples at random from D with replacement. Such a sample 

is called a bootstrap replicate of the original training set D. On aver-

age, each sample Si contains 63.2% of the original examples in D, with 

some examples appearing multiple times.  

2. Build a classifier based on each sample Si. This gives us k classifiers. 

All the classifiers are built using the same base learning algorithm. 

Testing: Classify each test (or new) instance by voting of the k classifiers 

(equal weights). The majority class is assigned as the class of the instance. 

Bagging can improve the accuracy significantly for unstable learning al-

gorithms, i.e., a slight change in the training data resulting in a major 

change in the output classifier. Decision tree and rule induction methods 

are examples of unstable learning methods. k-nearest neighbor and naïve 

Bayesian methods are examples of stable techniques. For stable classifiers, 

Bagging may sometime degrade the accuracy. 

3.10.2 Boosting 

Boosting is a family of ensemble techniques, which, like bagging, also 

manipulates the training examples and produces multiple classifiers to im-

prove the classification accuracy [477]. Here we only describe the popular 

AdaBoost algorithm given in [186]. Unlike bagging, AdaBoost assigns a 

weight to each training example.  

Training: AdaBoost produces a sequence of classifiers (also using the 

same base learner). Each classifier is dependent on the previous one, and 

focuses on the previous one’s errors. Training examples that are incor-

rectly classified by the previous classifiers are given higher weights. 

Let the original training set D be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi
is an input vector, yi is its class label and yi Y (the set of class labels). 

With a weight attached to each example, we have, {(x1, y1, w1), (x2, y2, w2),

…, (xn, yn, wn)}, and i wi = 1. The AdaBoost algorithm is given in Fig. 

3.22.

The algorithm builds a sequence of k classifiers (k is specified by the 

user) using a base learner, called BaseLeaner in line 3. Initially, the weight 



Bibliographic Notes      115 

for each training example is 1/n (line 1). In each iteration, the training data 

set becomes Dt, which is the same as D, but with different weights. Each 

iteration builds a new classifier ft (line 3). The error of ft is calculated in 

line 4. If it is too large, delete the iteration and exit (lines 5–7). Lines 9–11 

update and normalize the weights for building the next classifier.  

Testing: For each test case, the results of the series of classifiers are com-

bined to determine the final class of the test case, which is shown in line 14 

of Fig. 3.22 (a weighted voting). 

Boosting works better than bagging in most cases as shown in [454]. It 

also tends to improve performance more when the base learner is unstable.  

Bibliographic Notes 

Supervised learning has been studied extensively by the machine learning 

community. The book by Mitchell [385] covers most learning techniques 

and is easy to read. Duda et al.’s pattern classification book is also a great 

AdaBoost(D, Y, BaseLeaner, k)

1.  Initialize D1(wi)  1/n for all i; // initialize the weights 
2. for t = 1 to k do

3.  ft  BaseLearner(Dt); // build a new classifier ft

4.

iitt yDfi

itt wDe
))((:

)(
x

; // compute the error of ft

5. if et > ½ then  // if the error is too large, 

6. k k – 1; // remove the iteration and 
7. exit-loop // exit 
8. else

9. t et / (1  et);

10 Dt+1(wi) Dt(wi) ;
            otherwise1

))(( if iittt yDf x
 // update the weights 

11. Dt+1(wi)
n

i it

it

wD

wD

1 1

1

)(

)(
// normalize the weights 

12. endif

13. endfor 

14.  

yft tYy
final

t

f
)(:

1
logmaxarg )(

x

x // the final output classifier 

Fig. 3.22. The AdaBoost algorithm 



116     3 Supervised Learning

reference [155]. Most data mining books have one or two chapters on su-

pervised learning, e.g., those by Han and Kamber [218], Hand et al. [221], 

Tan et al. [512], and Witten and Frank [549]. 

For decision tree induction, Quinlan’s book [453] has all the details and 

the code of his popular decision tree system C4.5. Other well-known 

systems include CART by Breiman et al. [62] and CHAD by Kass [270]. 

Scaling up of decision tree algorithms was also studied in several papers. 

These algorithms can have the data on disk, and are thus able to run with 

huge data sets. See [195] for an algorithm and also additional references.  

Rule induction algorithms generate rules directly from the data. Well-

known systems include AQ by Michalski et al. [381], CN2 by Clark and 

Niblett [104], FOIL by Quinlan [452], FOCL by Pazzani et al. [438], I-

REP by Furnkranz and Widmer [189], and RIPPER by Cohen [106]. 

Using association rules to build classifiers was proposed by Liu et al. in 

[343], which also reported the CBA system. CBA selects a small subset of 

class association rules as the classifier. Other classifier building techniques 

include combining multiple rules by Li et al. [328], using rules as features 

by Meretakis and Wüthrich [379], Antonie and Zaiane [23], Deshpande 

and Karpis [131], Jindal and Liu [255], and Lesh et al. [314], generating a 

subset of rules by Cong et al. [112, 113], Wang et al. [536], Yin and Han 

[578], and Zaki and Aggarwal [587]. Other systems include those by Dong 

et al. [149], Li et al. [319, 320], Yang et al. [570], etc.   

The naïve Bayesian classification model described in Sect. 3.6 is based 

on the papers by Domingos and Pazzani [148], Kohavi et al. [285] and 

Langley et al [301]. The naïve Bayesian classification for text discussed in 

Sect. 3.7 is based on the multinomial formulation given by McCallum and 

Nigam [365]. This model was also used earlier by Lewis and Gale [317], 

Li and Yamanishi [318], and Nigam et al. [413]. Another formulation of 

naïve Bayes is based on the multivariate Bernoulli model, which was used 

in Lewis [316], and Robertson and Sparck-Jones [464]. 

Support vector machines (SVM) was first introduced by Vapnik and his 

colleagues in 1992 [59]. Further details were given in his 1995 book [525]. 

Two other books on SVM and kernel methods are those by Cristianini and 

Shawe-Taylor [118] and Scholkopf and Smola [479]. The discussion of 

SVM in this chapter is heavily influenced by Cristianini and Shawe-

Taylor’s book and the tutorial paper by Burges [74]. Two popular SVM 

systems are SVMLight (available at http://svmlight.joachims.org/) and 

LIBSVM (available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Existing classifier ensemble methods include bagging by Breiman [63], 

boosting by Schapire [477] and Freund and Schapire [186], random forest 

also by Breiman [65], stacking by Wolpert [552], random trees by Fan 

[169], and many others.  



4 Unsupervised Learning 

Supervised learning discovers patterns in the data that relate data attributes 

to a class attribute. These patterns are then utilized to predict the values of 

the class attribute of future data instances. These classes indicate some 

real-world predictive or classification tasks such as determining whether a 

news article belongs to the category of sports or politics, or whether a pa-

tient has a particular disease. However, in some other applications, the data 

have no class attributes. The user wants to explore the data to find some in-

trinsic structures in them. Clustering is one technology for finding such 

structures. It organizes data instances into similarity groups, called clus-

ters such that the data instances in the same cluster are similar to each 

other and data instances in different clusters are very different from each 

other. Clustering is often called unsupervised learning, because unlike 

supervised learning, class values denoting an a priori partition or grouping 

of the data are not given. Note that according to this definition, we can also 

say that association rule mining is an unsupervised learning task. However, 

due to historical reasons, clustering is closely associated and even syn-

onymous with unsupervised learning while association rule mining is not. 

We follow this convention, and describe some main clustering techniques 

in this chapter.

Clustering has been shown to be one of the most commonly used data 

analysis techniques. It also has a long history, and has been used in almost 

every field, e.g., medicine, psychology, botany, sociology, biology, arche-

ology, marketing, insurance, library science, etc. In recent years, due to the 

rapid increase of online documents and the expansion of the Web, text 

document clustering too has become a very important task. In Chap. 12, 

we will also see that clustering is very useful in Web usage mining.  

4.1 Basic Concepts  

Clustering is the process of organizing data instances into groups whose 

members are similar in some way. A cluster is therefore a collection of 

data instances which are “similar” to each other and are “dissimilar” to 



118 4 Unsupervised Learning

data instances in other clusters. In the clustering literature, a data instance 

is also called an object as the instance may represent an object in the real-

world. It is also called a data point as it can be seen as a point in an r-

dimension space, where r is the number of attributes in the data.  

Fig. 4.1 shows a 2-dimensional data set. We can clearly see three groups 

of data points. Each group is a cluster. The task of clustering is to find the 

three clusters hidden in the data. Although it is easy for a human to visu-

ally detect clusters in a 2-dimensional or even 3-demensional space, it be-

comes very hard, if not impossible, to detect clusters visually as the num-

ber of dimensions increases. Additionally, in many applications, clusters 

are not as clear-cut or well separated as the three clusters in Fig. 4.1. Auto-

matic techniques are thus needed for clustering. 

Fig. 4.1. Three natural groups or clusters of data points 

After seeing the example in Fig. 4.1, you may ask the question: What is 

clustering for? To answer it, let us see some application examples from 

different domains.

Example 1: A company wants to conduct a marketing campaign to pro-

mote its products. The most effective strategy is to design a set of person-

alized marketing materials for each individual customer according to 

his/her profile and financial situation. However, this is too expensive for a 

large number of customers. At the other extreme, the company designs 

only one set of marketing materials to be used for all customers. This one-

size-fits-all approach, however, may not be effective. The most cost-

effective approach is to segment the customers into a small number of 

groups according to their similarities and design some targeted marketing 

materials for each group. This segmentation task is commonly done using 

clustering algorithms, which partition customers into similarity groups. In 

marketing research, clustering is often called segmentation.

Example 2: A company wants to produce and sell T-shirts. Similar to the 

case above, on one extreme, for each customer it can measure his/her size 

and have a T-shirt tailor-made for him/her. Obviously, this T-shirt is going 

to be expensive. On the other extreme, only one size of T-shirts is made. 



4.1 Basic Concepts      119 

Since this size may not fit most people, the company might not be able to 

sell as many T-shirts. Again, the most cost effective way is to group people 

based on their sizes and make a different generalized size of T-shirts for 

each group. This is why we see small, medium and large size T-shirts in 

shopping malls, and seldom see T-shirts with only a single size. The 

method used to group people according to their sizes is clustering. The 

process is usually as follows: The T-shirt manufacturer first samples a 

large number of people and measure their sizes to produce a measurement 

database. It then clusters the data, which partitions the data into some 

similarity subsets, i.e., clusters. For each cluster, it computes the average 

of the sizes and then uses the average to mass-produce T-shirts for all peo-

ple of similar size.  

Example 3: Everyday, news agencies around the world generate a large 

number of news articles. If a Web site wants to collect these news articles 

to provide an integrated news service, it has to organize the collected arti-

cles according to some topic hierarchy. The question is: What should the 

topics be, and how should they be organized? One possibility is to employ 

a group of human editors to do the job. However, the manual organization 

is costly and very time consuming, which makes it unsuitable for news and 

other time sensitive information. Throwing all the news articles to the 

readers with no organization is clearly not an option. Although classifica-

tion is able to classify news articles according to predefined topics, it is not 

applicable here because classification needs training data, which have to be 

manually labeled with topic classes. Since news topics change constantly 

and rapidly, the training data would need to change constantly as well, 

which is infeasible via manual labeling. Clustering is clearly a solution for 

this problem because it automatically groups a stream of news articles 

based on their content similarities. Hierarchical clustering algorithms

can also organize documents hierarchically, i.e., each topic may contain 

sub-topics and so on. Topic hierarchies are particularly useful for texts. 

The above three examples indicate two types of clustering, partitional

and hierarchical. Indeed, these are the two most important types of clus-

tering approaches. We will study some specific algorithms of these two 

types of clustering.

Our discussion and examples above also indicate that clustering needs a 

similarity function to measure how similar two data points (or objects) are, 

or alternatively a distance function to measure the distance between two 

data points. We will use distance functions in this chapter. The goal of 

clustering is thus to discover the intrinsic grouping of the input data 

through the use of a clustering algorithm and a distance function.  



120 4 Unsupervised Learning

4.2 K-means Clustering  

The k-means algorithm is the best known partitional clustering algo-

rithm. It is perhaps also the most widely used among all clustering algo-

rithms due to its simplicity and efficiency. Given a set of data points and 

the required number of k clusters (k is specified by the user), this algorithm 

iteratively partitions the data into k clusters based on a distance function.

4.2.1 K-means Algorithm 

Let the set of data points (or instances) D be

{x1, x2, …, xn},

where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X r, and r

is the number of attributes in the data (or the number of dimensions of the 

data space). The k-means algorithm partitions the given data into k clus-

ters. Each cluster has a cluster center, which is also called the cluster cen-

troid. The centroid, usually used to represent the cluster, is simply the 

mean of all the data points in the cluster, which gives the name to the algo-

rithm, i.e., since there are k clusters, thus k means. Figure 4.2 gives the k-

means clustering algorithm.  

At the beginning, the algorithm randomly selects k data points as the 

seed centroids. It then computes the distance between each seed centroid 

and every data point. Each data point is assigned to the centroid that is 

closest to it. A centroid and its data points therefore represent a cluster. 

Once all the data points in the data are assigned, the centroid for each clus-

ter is re-computed using the data points in the current cluster. This process 

repeats until a stopping criterion is met. The stopping (or convergence) cri-

terion can be any one of the following: 

Algorithm k-means(k, D)

1 choose k data points as the initial centroids (cluster centers)   

2 repeat

3 for each data point x D do 

4 compute the distance from x to each centroid; 

5 assign x to the closest centroid // a centroid represents a cluster 

6 endfor

7 re-compute the centroid using the current cluster memberships 

8 until the stopping criterion is met 

Fig. 4.2. The k-means algorithm 



4.2 K-means Clustering      121 

1. no (or minimum) re-assignments of data points to different clusters.  

2. no (or minimum) change of centroids. 

3. minimum decrease in the sum of squared error (SSE),  

,),(
1

2
k

j C

j

j

distSSE
x

mx (1)

where k is the number of required clusters, Cj is the jth cluster, mj is the 

centroid of cluster Cj (the mean vector of all the data points in Cj), and 

dist(x, mj) is the distance between data point x and centroid mj.

The k-means algorithm can be used for any application data set where the 

mean can be defined and computed. In Euclidean space, the mean of a 

cluster is computed with:  

,
||

1

ji C

i

j

j
C x

xm (2)

where |Cj| is the number of data points in cluster Cj. The distance from a 

data point xi to a cluster mean (centroid) mj is computed with 

.)(...)()(                   

||||),(

22

22

2

11 jrirjiji

jiji

mxmxmx

dist mxmx
(3)

Example 4: Figure 4.3(A) shows a set of data points in a 2-dimensional 

space. We want to find 2 clusters from the data, i.e., k = 2. First, two data 

points (each marked with a cross) are randomly selected to be the initial 

centroids (or seeds) shown in Fig. 4.3(A). The algorithm then goes to the 

first iteration (the repeat-loop). 

Iteration 1: Each data point is assigned to its closest centroid to form 2 

clusters. The resulting clusters are given in Fig. 4.3(B). Then the cen-

troids are re-computed based on the data points in the current clusters 

(Fig. 4.3(C)). This leads to iteration 2.

Iteration 2: Again, each data point is assigned to its closest new centroid to 

form two new clusters shown in Fig. 4.3(D). The centroids are then re-

computed. The new centroids are shown in Fig. 4.3(E).  

Iteration 3: The same operations are performed as in the first two itera-

tions. Since there is no re-assignment of data points to different clusters 

in this iteration, the algorithm ends.  

The final clusters are those given in Fig. 4.3(G). The set of data points in 

each cluster and its centroid are output to the user.  



122 4 Unsupervised Learning

Fig. 4.3. The working of the k-means algorithm through an example 

One problem with the k-means algorithm is that some clusters may be-

come empty during the clustering process since no data point is assigned to 

them. Such clusters are called empty clusters. To deal with an empty clus-

ter, we can choose a data point as the replacement centroid, e.g., a data 

point that is furthest from the centroid of a large cluster. If the sum of the 

squared error (SSE) is used as the stopping criterion, the cluster with the 

largest squared error may be used to find another centroid. 

+

+

+ +

+ +

(A). Random selection of k seeds (or centroids) 

+

+
+ +

+ +

Iteration 2:  (D). Cluster assignment (E). Re-compute centroids 

+ +

Iteration 3:  (F). Cluster assignment (G). Re-compute centroids 

Iteration 1:  (B). Cluster assignment (C). Re-compute centroids 



4.2 K-means Clustering      123 

4.2.2 Disk Version of the K-means Algorithm 

The k-means algorithm may be implemented in such a way that it does not 

need to load the entire data set into the main memory, which is useful for 

large data sets. Notice that the centroids for the k clusters can be computed 

incrementally in each iteration because the summation in Equation (2) can 

be calculated separately first. During the clustering process, the number of 

data points in each cluster can be counted incrementally as well. This gives 

us a disk based implementation of the algorithm (Fig. 4.4), which produces 

exactly the same clusters as that in Fig. 4.2, but with the data on disk. In 

each for-loop, the algorithm simply scans the data once.  

The whole clustering process thus scans the data t times, where t is the 

number of iterations before convergence, which is usually not very large 

(< 50). In applications, it is quite common to set a limit on the number of 

iterations because later iterations typically result in only minor changes to 

the clusters. Thus, this algorithm may be used to cluster large data sets 

which cannot be loaded into the main memory. Although there are several 

special algorithms that scale-up clustering algorithms to large data sets, 

they all require sophisticated techniques.  

Algorithm disk-k-means(k, D)

1 Choose k data points as the initial centriods mj, j = 1, …, k;

2 repeat

3 initialize sj 0, j = 1, …, k; // 0 is a vector with all 0’s 

4 initialize nj  0, j = 1, …, k; // nj is the number of points in cluster j

5 for each data point x D do 

6 );,(minarg
},...2,1{

i
ki

distj mx

7 assign x to the cluster j;

8 sj sj + x;

9 nj nj + 1;

10 endfor

11 mj sj/nj, j = 1, …, k;

12 until the stopping criterion is met 

Fig. 4.4. A simple disk version of the k-means algorithm 

Let us give some explanations of this algorithm. Line 1 does exactly the 

same thing as the algorithm in Fig. 4.2. Line 3 initializes vector sj which is 

used to incrementally compute the sum in Equation (2) (line 8). Line 4 ini-

tializes nj which records the number of data points assigned to cluster j

(line 9). Lines 6 and 7 perform exactly the same tasks as lines 4 and 5 in 

the original algorithm in Fig. 4.2. Line 11 re-computes the centroids, 



124 4 Unsupervised Learning

which are used in the next iteration. Any of the three stopping criteria may 

be used here. If the sum of squared error is applied, we can modify the al-

gorithm slightly to compute the sum of square error incrementally.  

4.2.3 Strengths and Weaknesses  

The main strengths of the k-means algorithm are its simplicity and effi-

ciency. It is easy to understand and easy to implement. Its time complexity 

is O(tkn), where n is the number of data points, k is the number of clusters, 

and t is the number of iterations. Since both k and t are normally much 

smaller than n. The k-means algorithm is considered a linear algorithm in 

the number of data points.  

The weaknesses and ways to address them are as follows:  

1. The algorithm is only applicable to data sets where the notion of the 

mean is defined. Thus, it is difficult to apply to categorical data sets. 

There is, however, a variation of the k-means algorithm called k-modes,

which clusters categorical data. The algorithm uses the mode instead of 

the mean as the centroid. Assuming that the data instances are described 

by r categorical attributes, the mode of a cluster Cj is a tuple mj = (mj1,

mj2, …, mjr) where mji is the most frequent value of the ith attribute of 

the data instances in cluster Cj. The similarity (or distance) between a 

data instance and a mode is the number of values that they match (or do 

not match).  

2. The user needs to specify the number of clusters k in advance. In prac-

tice, several k values are tried and the one that gives the most desirable 

result is selected. We will discuss the evaluation of clusters later.  

3. The algorithm is sensitive to outliers. Outliers are data points that are 

very far away from other data points. Outliers could be errors in the data 

recording or some special data points with very different values. For ex-

ample, in an employee data set, the salary of the Chief-Executive-

Officer (CEO) of the company may be considered as an outlier because 

its value could be many times larger than everyone else. Since the k-

means algorithm uses the mean as the centroid of each cluster, outliers 

may result in undesirable clusters as the following example shows. 

Example 5: In Fig. 4.5(A), due to an outlier data point, the two result-

ing clusters do not reflect the natural groupings in the data. The ideal 

clusters are shown in Fig. 4.5(B). The outlier should be identified and 

reported to the user.

There are several methods for dealing with outliers. One simple 

method is to remove some data points in the clustering process that are 



4.2 K-means Clustering      125 

much further away from the centroids than other data points. To be safe, 

we may want to monitor these possible outliers over a few iterations and 

then decide whether to remove them. It is possible that a very small 

cluster of data points may be outliers. Usually, a threshold value is used 

to make the decision.  

Fig. 4.5. Clustering with and without the effect of outliers 

Another method is to perform random sampling. Since in sampling 

we only choose a small subset of the data points, the chance of selecting 

an outlier is very small. We can use the sample to do a pre-clustering 

and then assign the rest of the data points to these clusters, which may 

be done in any of the three ways below: 

Assign each remaining data point to the centroid closest to it. This is 

the simplest method.   

Use the clusters produced from the sample to perform supervised 

learning (classification). Each cluster is regarded as a class. The clus-

tered sample is thus treated as the training data for learning. The re-

sulting classifier is then applied to classify the remaining data points 

into appropriate classes or clusters.  

Use the clusters produced from the sample as seeds to perform semi-

supervised learning. Semi-supervised learning is a new learning 

model that learns from a small set of labeled examples (with classes) 

and a large set of unlabeled examples (without classes). In our case, 

the clustered sample data are used as the labeled set and the remain-

ing data points are used as the unlabeled set. The results of the learn-

++

outlier 

++

outlier 

(A): Undesirable clusters 

(B): Ideal clusters 



126 4 Unsupervised Learning

ing naturally cluster all the remaining data points.  We will study this 

technique in the next chapter.  

4. The algorithm is sensitive to initial seeds, which are the initially se-

lected centroids. Different initial seeds may result in different clusters. 

Thus, if the sum of squared error is used as the stopping criterion, the 

algorithm only achieves local optimal. The global optimal is computa-

tionally infeasible for large data sets.  

Example 6: Figure 4.6 shows the clustering process of a 2-dimensional 

data set. The goal is to find two clusters. The randomly selected initial 

seeds are marked with crosses in Fig. 4.6(A). Figure 4.6(B) gives the 

clustering result of the first iteration. Figure 4.6(C) gives the result of 

the second iteration. Since there is no re-assignment of data points, the 

algorithm stops.  

Fig. 4.6. Poor initial seeds (centroids) 

If the initial seeds are different, we may obtain entirely different clus-

ters as Fig. 4.7 shows. Figure 4.7 uses the same data as Fig. 4.6, but dif-

ferent initial seeds (Fig. 4.7(A)). After two iterations, the algorithm 

ends, and the final clusters are given in Fig. 4.7(C). These two clusters 

are more reasonable than the two clusters in Fig. 4.6(C), which indicates 

that the choice of the initial seeds in Fig. 4.6(A) is poor.  

To select good initial seeds, researchers have proposed several meth-

ods. One simple method is to first compute the mean m (the centroid) of 

the entire data set (any random data point rather than the mean can be 

+

+

(A). Random selection of seeds (centroids)

 (B). Iteration 1 (C). Iteration 2 

+

+

+

+



4.2 K-means Clustering      127 

used as well). Then the first seed data point x1 is selected to be the fur-

thest from the mean m. The second data point x2 is selected to be the 

furthest from x1. Each subsequent data point xi is selected such that the 

sum of distances from xi to those already selected data points is the larg-

est. However, if the data has outliers, the method will not work well. To 

deal with outliers, again, we can randomly select a small sample of the 

data and perform the same operation on the sample. As we discussed 

above, since the number of outliers is small, the chance that they show 

up in the sample is very small.  

Fig. 4.7. Good initial seeds (centroids) 

Another method is to sample the data and use the sample to perform 

hierarchical clustering, which we will discuss in Sect. 4.4. The centroids 

of the resulting k clusters are used as the initial seeds.  

Yet another approach is to manually select seeds. This may not be a 

difficult task for text clustering applications because it is easy for human 

users to read some documents and pick some good seeds. These seeds 

may help improve the clustering result significantly and also enable the 

system to produce clusters that meet the user’s needs.   

5. The k-means algorithm is not suitable for discovering clusters that are 

not hyper-ellipsoids (or hyper-spheres).  

Example 7: Figure 4.8(A) shows a 2-dimensional data set. There are 

two irregular shaped clusters. However, the two clusters are not hyper-

(A). Random selection of k seeds (centroids) 

 (B). Iteration 1 (C). Iteration 2 

+

+

+

+
++



128 4 Unsupervised Learning

ellipsoids, which means that the k-means algorithm will not be able to 

find them. Instead, it may find the two clusters shown in Fig. 4.8(B).  

The question is: are the two clusters in Fig. 4.8(B) necessarily bad? 

The answer is no. It depends on the application. It is not true that a clus-

tering algorithm that is able to find arbitrarily shaped clusters is always 

better. We will discuss this issue in Sect. 4.3.2. 

Fig. 4.8. Natural (but irregular) clusters and k-means clusters 

Despite these weaknesses, k-means is still the most popular algorithm in 

practice due to its simplicity, efficiency and the fact that other clustering 

algorithms have their own lists of weaknesses. There is no clear evidence 

showing that any other clustering algorithm performs better than the k-

means algorithm in general, although it may be more suitable for some 

specific types of data or applications than k-means. Note also that compar-

ing different clustering algorithms is a very difficult task because unlike 

supervised learning, nobody knows what the correct clusters are, especially 

in high dimensional spaces. Although there are several cluster evaluation 

methods, they all have drawbacks. We will discuss the evaluation issue in 

Sect. 4.9.

4.3 Representation of Clusters  

Once a set of clusters is found, the next task is to find a way to represent 

the clusters. In some applications, outputting the set of data points that 

makes up the cluster to the user is sufficient. However, in other applica-

tions that involve decision making, the resulting clusters need to be repre-

sented in a compact and understandable way, which also facilitates the 

evaluation of the resulting clusters.   

(A): Two natural clusters (B): k-means clusters 

+

+



4.3 Representation of Clusters      129 

4.3.1 Common Ways of Representing Clusters 

There are three main ways to represent clusters: 

1. Use the centroid of each cluster to represent the cluster. This is the most 

popular way. The centroid tells where the center of the cluster is. One 

may also compute the radius and standard deviation of the cluster to de-

termine the spread in each dimension. The centroid representation alone 

works well if the clusters are of the hyper-spherical shape. If clusters are 

elongated or are of other shapes, centroids may not be suitable.  

2. Use classification models to represent clusters. In this method, we treat 

each cluster as a class. That is, all the data points in a cluster are re-

garded as having the same class label, e.g., the cluster ID. We then run a 

supervised learning algorithm on the data to find a classification model. 

For example, we may use the decision tree learning to distinguish the 

clusters. The resulting tree or set of rules provide an understandable rep-

resentation of the clusters.

Figure 4.9 shows a partitioning produced by a decision tree algo-

rithm. The original clustering gave three clusters. Data points in cluster 

1 are represented by 1’s, data points in cluster 2 are represented by 2’s, 

and data points in cluster 3 are represented by 3’s. We can see that the 

three clusters are separated and each can be represented with a rule. 

x  2  cluster 1 

x > 2, y > 1.5  cluster 2 

x > 2, y  1.5  cluster 3 

Fig. 4.9. Description of clusters using rules 

We make two remarks about this representation method: 

The partitioning in Fig. 4.9 is an ideal case as each cluster is repre-

sented by a single rectangle (or rule). However, in most applications, 

the situation may not be so ideal. A cluster may be split into a few 

1

1 1

1
1

211

1
1

1 1

1 2
1

2

2
2

2

2

2
2

2

2

3

33

3
3

3
3

3

3

2 x

  y 

1.5 

2

2



130 4 Unsupervised Learning

hyper-rectangles or rules. However, there is usually a dominant or 

large rule which covers most of the data points in the cluster.  

One can use the set of rules to evaluate the clusters to see whether 

they conform to some existing domain knowledge or intuition.  

3. Use frequent values in each cluster to represent it. This method is 

mainly for clustering of categorical data (e.g., in the k-modes cluster-

ing). It is also the key method used in text clustering, where a small set 

of frequent words in each cluster is selected to represent the cluster.  

4.3.2 Clusters of Arbitrary Shapes 

Hyper-elliptical and hyper-spherical clusters are usually easy to represent, 

using their centroids together with spreads (e.g., standard deviations), 

rules, or a combination of both. However, other arbitrary shaped clusters, 

like the natural clusters shown in Fig. 4.8(A), are hard to represent espe-

cially in high dimensional spaces.  

A common criticism about an algorithm like k-means is that it is not 

able to find arbitrarily shaped clusters. However, this criticism may not be 

as bad as it sounds because whether one type of clustering is desirable or 

not depends on the application. Let us use the natural clusters in Fig. 

4.8(A) to discuss this issue together with an artificial application.  

Example 8: Assume that the data shown in Fig. 4.8(A) is the measurement 

data of people’s physical sizes. We want to group people based on their 

sizes into only two groups in order to mass-produce T-shirts of only 2 sizes 

(say large and small). Even if the measurement data indicate two natural 

clusters as in Fig. 4.8(A), it is difficult to use the clusters because we need 

centroids of the clusters to design T-shirts. The clusters in Fig. 4.8(B) are 

in fact better because they provide us the centroids that are representative 

of the surrounding data points. If we use the centroids of the two natural 

clusters as shown in Fig. 4.10 to make T-shirts, it is clearly inappropriate 

because they are too near to each other in this case. In general, it does not 

make sense to define the concept of center or centroid for an irregularly 

shaped cluster. 

Note that clusters of arbitrary shapes can be found by neighborhood 

search algorithms such as some hierarchical clustering methods (see the 

next section), and density-based clustering methods [164]. Due to the dif-

ficulty of representing an arbitrarily shaped cluster, an algorithm that finds 

such clusters may only output a list of data points in each cluster, which 

are not as easy to use. These kinds of clusters are more useful in spatial 

and image processing applications, but less useful in others.  



4.4 Hierarchical Clustering      131 

Fig. 4.10. Two natural clusters and their centroids 

4.4 Hierarchical Clustering  

Hierarchical clustering is another major clustering approach. It has a num-

ber of desirable properties which make it popular. It clusters by producing 

a nested sequence of clusters like a tree (also called a dendrogram). Sin-

gleton clusters (individual data points) are at the bottom of the tree and one 

root cluster is at the top, which covers all data points. Each internal cluster 

node contains child cluster nodes. Sibling clusters partition the data points 

covered by their common parent. Figure 4.11 shows an example. 

Fig. 4.11. An illustration of hierarchical clustering 

At the bottom of the tree, there are 5 clusters (5 data points). At the next 

level, cluster 6 contains data points 1 and 2, and cluster 7 contains data 

points 4 and 5. As we move up the tree, we have fewer and fewer clusters. 

Since the whole clustering tree is stored, the user can choose to view clus-

ters at any level of the tree.  

+
+

9

8

6

1 32

7

4 5



132 4 Unsupervised Learning

There are two main types of hierarchical clustering methods: 

Agglomerative (bottom up) clustering: It builds the dendrogram (tree) 

from the bottom level, and merges the most similar (or nearest) pair of 

clusters at each level to go one level up. The process continues until all 

the data points are merged into a single cluster (i.e., the root cluster).  

Divisive (top down) clustering: It starts with all data points in one cluster, 

the root. It then splits the root into a set of child clusters. Each child 

cluster is recursively divided further until only singleton clusters of in-

dividual data points remain, i.e., each cluster with only a single point.

Agglomerative methods are much more popular than divisive methods. We 

will focus on agglomerative hierarchical clustering. The general agglom-

erative algorithm is given in Fig. 4.12.  

Algorithm Agglomerative(D)

1 Make each data point in the data set D a cluster,  

2 Compute all pair-wise distances of x1, x2, …, xn  D;

2 repeat

3 find two clusters that are nearest to each other; 

4 merge the two clusters form a new cluster c;

5 compute the distance from c to all other clusters; 

12 until there is only one cluster left 

Fig. 4.12. The agglomerative hierarchical clustering algorithm 

Example 9: Figure 4.13 illustrates the working of the algorithm. The data 

points are in a 2-dimensional space. Figure 4.13(A) shows the sequence of 

nested clusters, and Fig. 4.13(B) gives the dendrogram.  

Fig. 4.13. The working of an agglomerative hierarchical clustering algorithm  

4

3

1

p1 p3p2

p1

p2

p3

p4

p5

2

p4 p5

4

1 2

3

(A). Nested clusters (B) Dendrogram 



4.4 Hierarchical Clustering      133 

Unlike the k-means algorithm, which uses only the centroids in distance 

computation, hierarchical clustering may use anyone of several methods to 

determine the distance between two clusters. We introduce them next.  

4.4.1 Single-Link Method 

In single-link (or single linkage) hierarchical clustering, the distance be-

tween two clusters is the distance between two closest data points in the 

two clusters (one data point from each cluster). In other words, the single-

link clustering merges the two clusters in each step whose two nearest data 

points (or members) have the smallest distance, i.e., the two clusters with 

the smallest minimum pair-wise distance. The single-link method is suit-

able for finding non-elliptical shape clusters. However, it can be sensitive 

to noise in the data, which may cause the chain effect and produce strag-

gly clusters. Figure 4.14 illustrates this situation. The noisy data points 

(represented with filled circles) in the middle connect two natural clusters 

and split one of them.  

Fig. 4.14. The chain effect of the single-link method 

With suitable data structures, single-link hierarchical clustering can be 

done in O(n2) time, where n is the number of data points. This is much 

slower than the k-means method, which performs clustering in linear time.  

4.4.2  Complete-Link Method 

In complete-link (or complete linkage) clustering, the distance between 

two clusters is the maximum of all pair-wise distances between the data 

points in the two clusters. In other words, the complete-link clustering 

merges the two clusters in each step whose two furthest data points have 

the smallest distance, i.e., the two clusters with the smallest maximum

pair-wise distance. Figure 4.15 shows the clusters produced by complete-

link clustering using the same data as in Fig. 4.14.   



134 4 Unsupervised Learning

Fig. 4.15. Clustering using the complete-link method 

Although the complete-link method does not have the problem of chain 

effects, it can be sensitive to outliers. Despite this limitation, it has been 

observed that the complete-link method usually produces better clusters 

than the single-link method. The worse case time complexity of the com-

plete-link clustering is O(n2log n), where n is the number of data points.  

4.4.3  Average-Link Method 

This is a compromise between the sensitivity of complete-link clustering to 

outliers and the tendency of single-link clustering to form long chains that 

do not correspond to the intuitive notion of clusters as compact, spherical 

objects. In this method, the distance between two clusters is the average 

distance of all pair-wise distances between the data points in two clusters. 

The time complexity of this method is also O(n2log n).

Apart from the above three popular methods, there are several others. 

The following two methods are also commonly used: 

Centroid method: In this method, the distance between two clusters is the 

distance between their centroids.  

Ward's method: In this method, the distance between two clusters is de-

fined as the increase in the sum of squared error (distances) from that of 

two clusters to that of one merged cluster. Thus, the clusters to be merged 

in the next step are the ones that will increase the sum the least. Recall that 

the sum of squared error (SSE) is one of the measures used in the k-means 

clustering (Equation (1)).  

4.4.4. Strengths and Weaknesses  

Hierarchical clustering has several advantages compared to the k-means 

and other partitioning clustering methods. It is able to take any form of dis-

tance or similarity function. Moreover, unlike the k-means algorithm 

which only gives k clusters at the end, the hierarchy of clusters from hier-



4.5 Distance Functions      135 

archical clustering enables the user to explore clusters at any level of detail 

(or granularity). In many applications, this resulting hierarchy can be very 

useful in its own right. For example, in text document clustering, the clus-

ter hierarchy may represent a topic hierarchy in the documents.  

Some studies have shown that agglomerative hierarchical clustering of-

ten produces better clusters than the k-means method. It can also find clus-

ters of arbitrary shapes, e.g., using the single-link method.  

Hierarchical clustering also has several weaknesses. As we discussed 

with the individual methods, the single-link method may suffer from the 

chain effect, and the complete-link method is sensitive to outliers. The 

main shortcomings of all hierarchical clustering methods are their compu-

tation complexities and space requirements, which are at least quadratic. 

Compared to the k-means algorithm, this is very inefficient and not practi-

cal for large data sets. One can use sampling to deal with the problems. A 

small sample is taken to do clustering and then the rest of the data points 

are assigned to each cluster either by distance comparison or by supervised 

learning (see Sect. 4.3.1). Some scale-up methods may also be applied to 

large data sets. The main idea of the scale-up methods is to find many 

small clusters first using an efficient algorithm, and then to use the cen-

troids of these small clusters to represent the clusters to perform the final 

hierarchical clustering (see the BIRCH method in [610]).  

4.5 Distance Functions 

Distance or similarity functions play a central role in all clustering algo-

rithms. Numerous distance functions have been reported in the literature 

and used in applications. Different distance functions are also used for dif-

ferent types of attributes (also called variables).

4.5.1  Numeric Attributes 

The most commonly used distance functions for numeric attributes are the 

Euclidean distance and Manhattan (city block) distance. Both distance 

measures are special cases of a more general distance function called the 

Minkowski distance. We use dist(xi, xj) to denote the distance between 

two data points of r dimensions. The Minkowski distance is: 

,)||...|||(|),(
1

2211
hh

jrir

h

ji

h

jiji xxxxxxdist xx (4)

where h is a positive integer.



136 4 Unsupervised Learning

If h = 2, it is the Euclidean distance,

.)(...)()(),( 22

22

2

11 jrirjijiji xxxxxxdist xx (5)

If h = 1, it is the Manhattan distance,

.||...||||),( 2211 jrirjijiji xxxxxxdist xx (6)

Other common distance functions include: 

Weighted Euclidean distance: A weight is associated with each attribute 

to express its importance in relation to other attributes. 

.)(...)()(),( 22

222

2

111 jrirrjijiji xxwxxwxxwdist xx (7)

Squared Euclidean distance: the standard Euclidean distance is squared 

in order to place progressively greater weights on data points that are fur-

ther apart. The distance is  

.)(...)()(),( 22

22

2

11 jrirjijiji xxxxxxdist xx (8)

Chebychev distance: This distance measure is appropriate in cases where 

one wants to define two data points as “different” if they are different on 

any one of the attributes. The Chebychev distance is  

|).| ..., |,| |,max(|),( 2211 jrirjijiji xxxxxxdist xx (9)

4.5.2 Binary and Nominal Attributes 

The above distance measures are only appropriate for numeric attributes. 

For binary and nominal attributes (also called unordered categorical at-

tributes), we need different functions. Let us discuss binary attributes first.  

A binary attribute has two states or values, usually represented by 1 

and 0. The two states have no numerical ordering. For example, Gender 

has two values, male and female, which have no ordering relations but are 

just different. Existing distance functions for binary attributes are based on 

the proportion of value matches in two data points. A match means that, 

for a particular attribute, both data points have the same value. It is easy to 

use a confusion matrix to introduce these measures. Given the ith and jth

data points, xi and xj, we can construct the confusion matrix in Fig. 4.16. 

To give the distance functions, we further divide binary attributes into 

symmetric and asymmetric attributes. For different types of attributes, 

different distance functions need to be used [271]: 



4.5 Distance Functions      137 

a:  the number of attributes with the value of 1 for both data points. 

b:  the number of attributes for which xif = 1 and xjf = 0, where xif (xjf) is 

the value of the fth attribute of the data point xi (xj).

c:  the number of attributes for which xif = 0 and xjf = 1. 

d:  the number of attributes with the value of 0 for both data points. 

Fig. 4.16. Confusion matrix of two data points with only binary attributes 

Symmetric attributes: A binary attribute is symmetric if both of its states 

(0 and 1) have equal importance, and carry the same weight, e.g., male and 

female of the attribute Gender. The most commonly used distance function 

for symmetric attributes is the simple matching distance, which is the 

proportion of mismatches (Equation (10)) of their values. We assume that 

every attribute in the data set is a symmetric attribute. 

dcba

cb
dist ji ),( xx (10)

We can also weight some components in Equation (10) according to ap-

plication needs. For example, we may want mismatches to carry twice the 

weight of matches, or vice versa: 

)(2

)(2
),(

cbda

cb
dist ji xx (11)

cbda

cb
dist ji

)(2
),( xx (12)

Example 10: Given the following two data points, where each attribute is 

a symmetric binary attribute, 

x1 1 1 1 0 1 0 0 

x2 0 1 1 0 0 1 0 

the distance computed based on the simple matching distance is 

Data point xj

 1 0  

1 a b a+b 

0 c d c+d 

a+c b+d a+b+c+d 

Data point xi



138 4 Unsupervised Learning

.429.0
7

3

2122

12
),( jidist xx (13)

Asymmetric attributes: A binary attribute is asymmetric if one of the 

states is more important or valuable than the other. By convention, we use 

state 1 to represent the more important state, which is typically the rare or 

infrequent state. The most commonly used distance measure for asymmet-

ric attributes is the Jaccard distance:

.),(
cba

cb
dist ji xx (14)

Similarly, we can vary the Jaccard distance by giving more weight to

(b+c) or more weight to a to express different emphases.  

.
)(2

)(2
),(

cba

cb
dist ji xx (15)

.
2

),(
cba

cb
dist ji xx (16)

Note that there is also a Jaccard coefficient, which measures similarity 

(rather than distance) and is defined as a / (a+b+c).

For general nominal attributes with more than two states or values, the 

commonly used distance measure is also based on the simple matching dis-

tance. Given two data points xi and xj, let the number of attributes be r, and 

the number of values that match in xi and xj be q:

.),(
r

qr
dist ji xx (17)

As that for binary attributes, we can give higher weights to different com-

ponents in Equation (17) according to different application characteristics.  

4.5.3 Text Documents 

Although a text document consists of a sequence of sentences and each 

sentence consists of a sequence of words, a document is usually considered 

as a “bag” of words in document clustering. The sequence and the position 

information of words are ignored. Thus a document can be represented as a 

vector just like a normal data point. However, we use similarity to com-

pare two documents rather than distance. The most commonly used simi-



4.6 Data Standardization      139 

larity function is the cosine similarity. We will study this similarity meas-

ure in Sect. 6.2.2 when we discuss information retrieval and Web search.  

4.6 Data Standardization 

One of the most important steps in data pre-processing for clustering is to 

standardize the data. For example, using the Euclidean distance, standardi-

zation of attributes is highly recommended so that all attributes can have 

equal impact on the distance computation. This is to avoid obtaining clus-

ters that are dominated by attributes with the largest amounts of variation.  

Example 11: In a 2-dimensional data set, the value range of one attribute 

is from 0 to 1, while the value range of the other attribute is from 0 to 

1000. Consider the following pair of data points xi: (0.1, 20) and xj: (0.9, 

720). The Euclidean distance between the two points is 

,700.000457)20720()1.09.0(),( 22
jidist xx (18)

which is almost completely dominated by (720 20) = 700. To deal with 

the problem, we standardize the attributes, e.g., to force the attributes to 

have a common value range. If both attributes are forced to have a scale 

within the range 0 1, the values 20 and 720 become 0.02 and 0.72. The 

distance on the first dimension becomes 0.8 and the distance on the second 

dimension 0.7, which are more equitable. Then, dist(xi, xj) = 1.063.  

This example shows that standardizing attributes is important. In fact, 

different types of attributes require different treatments. We list these 

treatments below.

Interval-scaled attributes: These are numeric/continuous attributes. Their 

values are real numbers following a linear scale. Examples of such attrib-

utes are age, height, weight, cost, etc. The idea is that intervals keep the 

same importance through out the scale. For example, the difference in age 

between 10 and 20 is the same as that between 40 and 50.  

There are two main approaches to standardize interval scaled attributes, 

range and z-score. The range method divides each value by the range of 

valid values of the attribute so that the transformed value ranges between 0 

and 1. Given the value xif of the fth attribute of the ith data point, the new 

value rg(xif) is, 

,
)min()max(

)min(
)(

ff

fx
xrg

if

if
(19)



140 4 Unsupervised Learning

where min(f) and max(f) are the minimum value and maximum value of at-

tribute f respectively. max(f)  min(f) is the value range of the valid values 

of attribute f.

The z-score method transforms an attribute value based on the mean and 

the standard deviation of the attribute. That is, the z-score of the value in-

dicates how far and in what direction the value deviates from the mean of 

the attribute, expressed in units of the standard deviation of the attribute. 

The standard deviation of attribute f, denoted by f, is computed with:  

,
1

)( 2

1

n

x f

n

i if

f

(20)

where n is the number of data points in the data set, xif is the same as 

above, and f is the mean of attribute f, which is computed with: 

.
1

1

n

i iff x
n

(21)

Given the value xif, its z-score (the new value after transformation) is z(xif),

.)(
f

fif

if

x
xz (22)

Ratio-Scaled Attributes: These are also numeric attributes taking real 

values. However, unlike interval-scaled attributes, their scales are not lin-

ear. For example, the total amount of microorganisms that evolve in a time 

t is approximately given by  

 AeBt,

where A and B are some positive constants. This formula is referred to as 

exponential growth. If we have such attributes in a data set for clustering, 

we have one of the following two options: 

1. Treat it as an interval-scaled attribute. This is often not recommended 

due to scale distortion.

2. Perform logarithmic transformation to each value, xif, i.e., 

).log( ifx (23)

After the transformation, the attribute can be treated as an interval-

scaled attribute. 

Nominal (Unordered Categorical) Attributes: As we discussed in Sect. 

4.5.2, the value of such an attribute can take anyone of a set of states (also 



4.7 Handling of Mixed Attributes      141 

called categories). The states have no logical or numerical ordering. For 

example, the attribute fruit may have the possible values, Apple, Orange,

and Pear, which have no ordering. A binary attribute is a special case of 

a nominal attribute with only two states or values.  

Although nominal attributes are not standardized as numeric attributes, 

it is sometime useful to convert a nominal attribute to a set of binary at-

tributes. Let the number of values of a nominal attribute be v. We can then 

create v binary attributes to represent them, i.e., one binary attribute for 

each value. If a data instance for the nominal attribute takes a particular 

value, the value of its corresponding binary attribute is set to 1, otherwise 

it is set to 0. The resulting binary attributes can be used as numeric attrib-

utes. We will discuss this again in Sect. 4.7.  

Example 12: For the nominal attribute fruit, we create three binary attrib-

utes called, Apple, Orange, and Pear in the new data. If a particular data 

instance in the original data has Apple as the value for fruit, then in the 

transformed data, we set the value of the attribute Apple to 1, and the val-

ues of attributes Orange and Pear to 0.  

Ordinal (Ordered Categorical) Attributes: An ordinal attribute is like a 

nominal attribute, but its values have a numerical ordering. For example, 

the age attribute may have the values, Young, Middle-Age and Old. The 

common approach to distance computation is to treat ordinal attributes as 

interval-scaled attributes and use the same methods as for interval-scaled 

attributes to standardize the values of ordinal attributes. 

4.7 Handling of Mixed Attributes 

So far, we have assumed that a data set contains only one type of attrib-

utes. However, in practice, a data set may contain mixed attributes. That is, 

it may contain any subset of the six types of attributes, interval-scaled,

symmetric binary, asymmetric binary, ratio-scaled, ordinal and nomi-

nal attributes. Clustering a data set involving mixed attributes is a chal-

lenging problem.  

One way to deal with such a data set is to choose a dominant attribute 

type and then convert the attributes of other types to this type. For exam-

ple, if most attributes in a data set are interval-scaled, we can convert ordi-

nal attributes and ratio-scaled attributes to interval-scaled attributes as dis-

cussed above. It is also appropriate to treat symmetric binary attributes as 

interval-scaled attributes. However, it does not make much sense to con-

vert a nominal attribute with more than two values or an asymmetric bi-

nary attribute to an interval-scaled attribute, but it is still frequently done in 



142 4 Unsupervised Learning

practice by assigning some numbers to them according to some hidden or-

dering. For instance, in the example of Apple, Orange, and Pear, one may 

order them according to their prices, and thus make the attribute fruit an 

ordinal attribute or even an interval-scaled attribute. In the previous sec-

tion, we also saw that a nominal attribute can be converted to a set of 

(symmetric) binary attributes, which in turn can be regarded as interval-

scaled attributes.

Another method of handling mixed attributes is to compute the distance 

of each attribute of the two data points separately and then combine all the 

individual distances to produce an overall distance. We describe one such 

method, which is due to Gower [205] and is also described in [218, 271]. 

We describe the combination formula first (Equation (24)) and then pre-

sent the methods to compute individual distances.  

.),(

1

1

r

f

f

ij

f

ij

r

f

f

ij

ji

d
dist xx

(24)

This distance value is between 0 and 1. r is the number of attributes in the 

data set. The indicator f
ij

 is 1 if both values xif and xjf for attribute f are 

non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute f is 

asymmetric and the match is 0–0. Equation (24) cannot be computed if all 
f

ij
’s are 0. In such a case, some default value may be used or one of the 

data points is removed. f
ijd is the distance contributed by attribute f, and it 

is in the range 0–1. If f is a binary or nominal attribute,  

otherwise

xxif
d

jfiff

ij
0

 1 (25)

If all the attributes are nominal, Equation (24) reduces to Equation (17). 

The same is true for symmetric binary attributes, in which we recover the 

simple matching distance (Equation (10)). When the attributes are all 

asymmetric, we obtain the Jaccard distance (Equation (14)).  

If attribute f is interval-scaled, we use  

f

jfiff
ij

R

xx
d

||
(26)

where Rf is the value range of attribute f, which is  

)min()max( ffR f
(27)



4.9 Cluster Evaluation      143 

Ordinal attributes and ratio-scaled attributes are handled in the same way 

after conversion.

If all the attributes are interval-scaled, Equation (24) becomes the Man-

hattan distance assuming that all attribute values are standardized by divid-

ing their values with the ranges of their corresponding attributes.  

4.8 Which Clustering Algorithm to Use? 

Clustering research and application has a long history. Over the years, a 

vast collection of clustering algorithms has been designed. This chapter 

only introduced several of the main algorithms.  

Given an application data set, choosing the “best” clustering algorithm 

to cluster the data is a challenge. Every clustering algorithm has limitations 

and works well with only certain data distributions. However, it is very 

hard, if not impossible, to know what distribution the application data fol-

lows. Worse still, the application data set may not fully follow any “ideal” 

structure or distribution required by the algorithms. Apart from choosing a 

suitable clustering algorithm from a large collection of available algo-

rithms, deciding how to standardize the data, to choose a suitable distance 

function and to select other parameter values (e.g., k in the k-means algo-

rithm) are complex as well. Due to these complexities, the common prac-

tice is to run several algorithms using different distance functions and pa-

rameter settings, and then to carefully analyze and compare the results.  

The interpretation of the results should be based on insight into the 

meaning of the original data together with knowledge of the algorithms 

used. That is, it is crucial that the user of a clustering algorithm fully un-

derstands the algorithm and its limitations. He/she should also have the 

domain expertise to examine the clustering results. In many cases, generat-

ing cluster descriptions using a supervised learning method (e.g., decision 

tree induction) can be particularly helpful to the analysis and comparison. 

4.9 Cluster Evaluation 

After a set of clusters is found, we need to assess the goodness of the clus-

ters. Unlike classification, where it is easy to measure accuracy using la-

beled test data, for clustering nobody knows what the correct clusters are 

given a data set. Thus, the quality of a clustering is much harder to evalu-

ate. We introduce a few commonly used evaluation methods below.  



144 4 Unsupervised Learning

User Inspection: A panel of experts is asked to inspect the resulting clus-

ters and to score them. Since this process is subjective, we take the average 

of the scores from all the experts as the final score of the clustering. This 

manual inspection is obviously a labor intensive and time consuming task. 

It is subjective as well. However, in most applications, some level of man-

ual inspection is necessary because no other existing evaluation methods 

are able to guarantee the quality of the final clusters. It should be noted 

that direct user inspection may be easy for certain types of data, but not for 

others. For example, user inspection is not hard for text documents because 

one can read them easily. However, for a relational table with only num-

bers, staring at the data instances in each cluster makes no sense. The user 

can only meaningfully study the centroids of the clusters, or rules that 

characterize the clusters generated by a decision tree algorithm or some 

other supervised learning methods (see Sect. 4.3.1).  

Ground Truth: In this method, classification data sets are used to evalu-

ate clustering algorithms. Recall that a classification data set has several 

classes, and each data instance/point is labeled with one class. Using such 

a data set for cluster evaluation, we make the assumption that each class 

corresponds to a cluster. For example, if a data set has three classes, we as-

sume that it has three clusters, and we request the clustering algorithm to 

also produce three clusters. After clustering, we compare the cluster mem-

berships with the class memberships to determine how good the clustering 

is. A variety of measures can be used to assess the clustering quality, e.g., 

entropy, purity, precision, recall, and F-score.  

To facilitate evaluation, a confusion matrix can be constructed from the 

resulting clusters. From the matrix, various measurements can be com-

puted. Let the set of classes in the data set D be C = (c1, c2, …, ck). The 

clustering method also produces k clusters, which partition D into k dis-

joint subsets, D1, D2, …, Dk.

Entropy: For each cluster, we can measure its entropy as follows:  

),(Prlog)(Pr)(
1

2 ji

k

j

jii ccDentropy (28)

where Pri(cj) is the proportion of class cj data points in cluster i or Di. The 

total entropy of the whole clustering (which considers all clusters) is 

.)(
||

||
)(

1

k

i

i
i

total Dentropy
D

D
Dentropy (29)



4.9 Cluster Evaluation      145 

Purity: This measures the extent that a cluster contains only one class of 

data. The purity of each cluster is computed with 

)).((Prmax)( ji
j

i cDpurity (30)

The total purity of the whole clustering (considering all clusters) is  

.)(
||

||
)(

1

k

i

i
i

total Dpurity
D

D
Dpurity (31)

Precision, recall, and F-score can be computed as well for each cluster 

based on the class that is the most frequent in the cluster. Note that these 

measures are based on a single class (see Sect. 3.3.2).  

Example 13: Assume we have a text collection D of 900 documents from 

three topics (or three classes), Science, Sports, and Politics. Each class has 

300 documents, and each document is labeled with one of the topics 

(classes). We use this collection to perform clustering to find three clus-

ters. Class/topic labels are not used in clustering. After clustering, we want 

to measure the effectiveness of the clustering algorithm.  

First, a confusion matrix (Fig. 4.17) is constructed based on the cluster-

ing results. From Fig. 4.17, we see that cluster 1 has 250 Science docu-

ments, 20 Sports documents, and 10 Politics documents. The entries of the 

other rows have similar meanings. The last two columns list the entropy 

and purity values of each cluster and also the total entropy and purity of 

the whole clustering (last row). We observe that cluster 1, which contains 

mainly Science documents, is a much better (or purer) cluster than the 

other two. This fact is also reflected by both their entropy and purity val-

ues.

Cluster Science Sports Politics  Entropy Purity 

1 250 20 10  0.589 0.893 

2 20 180 80  1.198 0.643 

3 30 100 210  1.257 0.617 

Total 300 300 300  1.031 0.711 

Fig. 4.17. Confusion matrix with entropy and purity values 

Obviously, we can use the total entropy or the total purity to compare 

different clustering results from the same algorithm with different parame-

ter settings or from different algorithms.  

Precision and recall may be computed similarly for each cluster. For ex-

ample, the precision of Science documents in cluster 1 is 0.89. The recall 



146 4 Unsupervised Learning

of Science documents in cluster 1 is 0.83. The F-score for Science docu-

ments is thus 0.86.  

A final remark about this evaluation method is that although an algo-

rithm may perform well on some labeled data sets, there is no guarantee 

that it will perform well on the actual application data at hand, which has 

no class labels. However, the fact that it performs well on some labeled 

data sets does give us some confidence on the quality of the algorithm. 

This evaluation method is said to be based on external data or informa-

tion.

There are also methods that evaluate clusters based on the internal in-

formation in the clusters (without using external data with class labels). 

These methods measure intra-cluster cohesion (compactness) and inter-

cluster separation (isolation). Cohesion measures how near the data 

points in a cluster are to the cluster centroid. Sum of squared error (SSE) is 

a commonly used measure. Separation measures how far apart different 

cluster centroids are from one another. Any distance functions can be used 

for the purpose. We should note, however, that good values for these 

measurements do not always mean good clusters. In most applications, ex-

pert judgments are still the key. Clustering evaluation remains to be a very 

difficult problem. 

Indirect Evaluation: In some applications, clustering is not the primary 

task. Instead, it is used to help perform another more important task. Then, 

we can use the performance on the primary task to determine which clus-

tering method is the best for the task. For instance, in a Web usage mining 

application, the primary task is to recommend books to online shoppers. If 

the shoppers can be clustered according to their profiles and their past pur-

chasing history, we may be able to provide better recommendations. A few 

clustering methods can be tried, and their results are then evaluated based 

on how well they help with the recommendation task. Of course, here we 

assume that the recommendation results can be reliably evaluated. 

4.10 Discovering Holes and Data Regions 

In this section, we wander a little to discuss something related but quite 

different from the preceding algorithms. We show that unsupervised learn-

ing tasks may be performed by using supervised learning techniques [350].  

In clustering, data points are grouped into clusters according to their dis-

tances (or similarities). However, clusters only represent one aspect of the 

hidden knowledge in data. Another aspect that we have not studied is the 

holes. If we treat data instances as points in an r-dimensional space, a hole 



4.10 Discovering Holes and Data Regions      147 

is simply a region in the space that contains no or few data points. The ex-

istence of holes is due to the following two reasons:  

1. insufficient data in certain areas, and/or  

2. certain attribute-value combinations are not possible or seldom occur. 

Although clusters are important, holes in the space can be quite useful 

too. For example, in a disease database we may find that certain symptoms 

and/or test values do not occur together, or when a certain medicine is 

used, some test values never go beyond certain ranges. Discovery of such 

information can be of great importance in medical domains because it 

could mean the discovery of a cure to a disease or some biological laws. 

The technique discussed in this section aims to divide the data space 

into two types of regions, data regions (also called dense regions) and

empty regions (also called sparse regions). A data region is an area in the 

space that contains a concentration of data points and can be regarded as a 

cluster. An empty region is a hole. A supervised learning technique similar 

to decision tree induction is used to separate the two types of regions. The 

algorithm (called CLTree for CLuser Tree [350]) works for numeric at-

tributes, but can be extended to discrete or categorical attributes.  

Decision tree learning is a popular technique for classifying data of 

various classes. For a decision tree algorithm to work, we need at least two 

classes of data. A clustering data set, however, has no class label for each 

data point. Thus, the technique is not directly applicable. However, the 

problem can be dealt with by a simple idea.   

We can regard each data instance/point in the data set as having a class 

label Y. We assume that the data space is uniformly distributed with an-

other type of points, called non-existing points, which we will label N.

With the N points added to the original data space, our problem of parti-

tioning the data space into data regions and empty regions becomes a su-

pervised classification problem. The decision tree algorithm can be 

adapted to solve the problem. Let us use an example to illustrate the idea.  

Example 14: Figure 4.18(A) gives a 2-dimensional space with 24 data (Y)

points. Two data regions (clusters) exist in the space. We then add some 

uniformly distributed N points (represented by “o”) to the data space (Fig. 

4.18(B)). With the augmented data set, we can run a decision tree algo-

rithm to obtain the partitioning of the space in Fig. 4.18(B). Data regions 

and empty regions are separated. Each region is a rectangle, which can be 

expressed as a rule.   

The reason that this technique works is that if there are clusters (or 

dense data regions) in the data space, the data points cannot be uniformly 

distributed in the entire space. By adding some uniformly distributed N



148 4 Unsupervised Learning

points, we can isolate data regions because within each data region there 

are significantly more Y points than N points. The decision tree technique 

is well known for this partitioning task.  

Fig. 4.18. Separating data and empty regions using a decision tree  

An interesting question is: can the task be performed without physically 

adding the N points to the original data? The answer is yes. Physically add-

ing N points increases the size of the data and thus the running time. A 

more important issue is that it is unlikely that we can have points truly uni-

formly distributed in a high-dimensional space as we would need an expo-

nential number of them. Fortunately, we do not need to physically add any 

N points. We can compute them when needed. The CLTree method is able 

to produce the partitioning in Fig. 4.18(C) with no N points added. The de-

tails are quite involved. Interested readers can refer to [350]. This method 

has some interesting characteristics:  

It provides descriptions or representations of the resulting data regions 

and empty regions in terms of hyper-rectangles, which can be expressed 

as rules as we have seen in Sect. 3.2 of Chap. 3 and in Sect. 4.3.1. Many 

applications require such descriptions, which can be easily interpreted 

by users.  

It automatically detects outliers, which are data points in empty regions.  

It may not use all attributes in the data just as in decision tree building 

(A): The original data space 

 (B). Partitioning with added  (C). Partitioning without adding  

N points N points.



Bibliographic Notes      149 

for supervised learning. That is, it can automatically determine what at-

tributes are important and what are not. This means that it can perform 

subspace clustering, i.e., finding clusters that exist in some subspaces 

(represented by some subsets of the attributes) of the original space.  

This method also has limitations. The main limitation is that data re-

gions of irregular shapes are hard to handle since decision tree learning 

only generates hyper-rectangles (formed by axis-parallel hyper-planes), 

which are rules. Hence, an irregularly shaped data or empty region may be 

split into several hyper-rectangles. Post-processing is needed to join them 

if desired (see [350] for additional details).  

Bibliographic Notes 

Clustering or unsupervised learning has a long history and a very large 

body of work. This chapter described only some widely used core algo-

rithms. Most other algorithms are variations or extensions of these meth-

ods. For a comprehensive coverage of clustering, please refer to several 

books dedicated to clustering, e.g., those by Everitt [167], Hartigan [222], 

Jain and Dubes [252], Kaufman and Rousseeuw [271], and Mirkin [383]. 

Most data mining texts also have excellent coverage of clustering tech-

niques, e.g., Han and Kamber [218] and Tan et al. [512], which have influ-

enced the writing of this chapter. Below, we review some more recent de-

velopments on clustering and give some further readings.  

A density-based clustering algorithm based on local data densities was 

proposed by Ester et al. [164] and Xu et al. [564] for finding clusters of ar-

bitrary shapes. Hinneburg and Keim [239], Sheikholeslami et al. [485] and 

Wang et al. [538] proposed several grid-based clustering methods which 

first partition the space into small grids. A popular neural network cluster-

ing algorithm is the Self-Organizing Map (SOM) by Kohonen [287]. 

Fuzzy clustering (e.g., fuzzy c-means) was studied by Bezdek [50] and 

Dunn [157]. Cheeseman et al. [94] and Moore [396] studied clustering us-

ing mixture models. The method assumes that clusters are a mixture of 

Gaussians and uses the EM algorithm [127] to learn a mixture density. We 

will see in Chap. 5 that EM based partially supervised learning algorithms 

are basically clustering methods with some given initial seeds.  

Most clustering algorithms work on numeric data. Categorical data 

and/or transaction data clustering were investigated by Barbará et al. [36], 

Ganti et al. [193], Gibson et al. [197], Guha et al. [212], Wang et al. [537], 

etc. A related area in artificial intelligence is the conceptual clustering, 

which was studied by Fisher [178], Misha et al. [384] and many others.  



Web Mining 

 

 

 

 

 

 

 
UNIT - III 

Information Retrieval and Web Search 



6 Information Retrieval and Web Search 

Web search needs no introduction. Due to its convenience and the richness 

of information on the Web, searching the Web is increasingly becoming 

the dominant information seeking method. People make fewer and fewer 

trips to libraries, but more and more searches on the Web. In fact, without 

effective search engines and rich Web contents, writing this book would 

have been much harder.  

Web search has its root in information retrieval (or IR for short), a 

field of study that helps the user find needed information from a large col-

lection of text documents. Traditional IR assumes that the basic informa-

tion unit is a document, and a large collection of documents is available to 

form the text database. On the Web, the documents are Web pages.

Retrieving information simply means finding a set of documents that is 

relevant to the user query. A ranking of the set of documents is usually 

also performed according to their relevance scores to the query. The most 

commonly used query format is a list of keywords, which are also called 

terms. IR is different from data retrieval in databases using SQL queries 

because the data in databases are highly structured and stored in relational 

tables, while information in text is unstructured. There is no structured 

query language like SQL for text retrieval.   

It is safe to say that Web search is the single most important application 

of IR. To a great extent, Web search also helped IR. Indeed, the tremen-

dous success of search engines has pushed IR to the center stage. Search is, 

however, not simply a straightforward application of traditional IR models. 

It uses some IR results, but it also has its unique techniques and presents 

many new problems for IR research.  

First of all, efficiency is a paramount issue for Web search, but is only 

secondary in traditional IR systems mainly due to the fact that document 

collections in most IR systems are not very large. However, the number of 

pages on the Web is huge. For example, Google indexed more than 8 bil-

lion pages when this book was written. Web users also demand very fast 

responses. No matter how effective an algorithm is, if the retrieval cannot 

be done efficiently, few people will use it. 

Web pages are also quite different from conventional text documents 

used in traditional IR systems. First, Web pages have hyperlinks and an-



184      6 Information Retrieval and Web Search

chor texts, which do not exist in traditional documents (except citations in 

research publications). Hyperlinks are extremely important for search and 

play a central role in search ranking algorithms as we will see in the next 

chapter. Anchor texts associated with hyperlinks too are crucial because a 

piece of anchor text is often a more accurate description of the page that its 

hyperlink points to. Second, Web pages are semi-structured. A Web page 

is not simply a few paragraphs of text like in a traditional document. A 

Web page has different fields, e.g., title, metadata, body, etc. The informa-

tion contained in certain fields (e.g., the title field) is more important than 

in others. Furthermore, the content in a page is typically organized and 

presented in several structured blocks (of rectangular shapes). Some blocks 

are important and some are not (e.g., advertisements, privacy policy, copy-

right notices, etc). Effectively detecting the main content block(s) of a 

Web page is useful to Web search because terms appearing in such blocks 

are more important.  

Finally, spamming is a major issue on the Web, but not a concern for 

traditional IR. This is so because the rank position of a page returned by a 

search engine is extremely important. If a page is relevant to a query but is 

ranked very low (e.g., below top 30), then the user is unlikely to look at the 

page. If the page sells a product, then this is bad for the business. In order 

to improve the ranking of some target pages, “illegitimate” means, called 

spamming, are often used to boost their rank positions. Detecting and 

fighting Web spam is a critical issue as it can push low quality (even ir-

relevant) pages to the top of the search rank, which harms the quality of 

the search results and the user’s search experience.  

In this chapter, we first study some information retrieval models and 

methods that are closely related to Web search. We then dive into some 

Web search specific issues.  

6.1 Basic Concepts of Information Retrieval  

Information retrieval (IR) is the study of helping users to find information 

that matches their information needs. Technically, IR studies the acquisi-

tion, organization, storage, retrieval, and distribution of information. His-

torically, IR is about document retrieval, emphasizing document as the ba-

sic unit. Fig. 6.1 gives a general architecture of an IR system.  

In Figure 6.1, the user with information need issues a query (user 

query) to the retrieval system through the query operations module. The 

retrieval module uses the document index to retrieve those documents that 

contain some query terms (such documents are likely to be relevant to the 

query), compute relevance scores for them, and then rank the retrieved 



6.1 Basic Concepts of Information Retrieval      185 

documents according to the scores. The ranked documents are then pre-

sented to the user. The document collection is also called the text data-

base, which is indexed by the indexer for efficient retrieval.  

Fig. 6.1. A general IR system architecture 

A user query represents the user’s information needs, which is in one of 

the following forms:

1. Keyword queries: The user expresses his/her information needs with a 

list of (at least one) keywords (or terms) aiming to find documents that 

contain some (at least one) or all the query terms. The terms in the list 

are assumed to be connected with a “soft” version of the logical AND. 

For example, if one is interested in finding information about Web min-

ing, one may issue the query ‘Web mining’ to an IR or search engine 

system. ‘Web mining’ is retreated as ‘Web AND mining’. The retrieval 

system then finds those likely relevant documents and ranks them suita-

bly to present to the user. Note that a retrieved document does not have 

to contain all the terms in the query. In some IR systems, the ordering of 

the words is also significant and will affect the retrieval results.

2. Boolean queries: The user can use Boolean operators, AND, OR, and 

NOT to construct complex queries. Thus, such queries consist of terms 

and Boolean operators. For example, ‘data OR Web’ is a Boolean 

query, which requests documents that contain the word ‘data’ or ‘Web.

A page is returned for a Boolean query if the query is logically true in 

the page (i.e., exact match). Although one can write complex Boolean 

queries using the three operators, users seldom write such queries. 

Search engines usually support a restricted version of Boolean queries.  

3. Phrase queries: Such a query consists of a sequence of words that 

makes up a phrase. Each returned document must contain at least one 

User

query

Document 

collection

The user 

Query  

operations

Retrieval 

system Ranked

documents 

Executable

query

user 

feedback indexer 

Document

index 



186      6 Information Retrieval and Web Search

instance of the phrase. In a search engine, a phrase query is normally 

enclosed with double quotes. For example, one can issue the following 

phrase query (including the double quotes), “Web mining techniques 

and applications” to find documents that contain the exact phrase.  

4. Proximity queries: The proximity query is a relaxed version of the 

phrase query and can be a combination of terms and phrases. Proximity 

queries seek the query terms within close proximity to each other. The

closeness is used as a factor in ranking the returned documents or pages. 

For example, a document that contains all query terms close together is 

considered more relevant than a page in which the query terms are far 

apart. Some systems allow the user to specify the maximum allowed 

distance between the query terms. Most search engines consider both 

term proximity and term ordering in retrieval.   

5. Full document queries: When the query is a full document, the user 

wants to find other documents that are similar to the query document. 

Some search engines (e.g., Google) allow the user to issue such a query 

by providing the URL of a query page. Additionally, in the returned re-

sults of a search engine, each snippet may have a link called “more like 

this” or “similar pages.” When the user clicks on the link, a set of pages 

similar to the page in the snippet is returned.   

6. Natural language questions: This is the most complex case, and also 

the ideal case. The user expresses his/her information need as a natural 

language question. The system then finds the answer. However, such 

queries are still hard to handle due to the difficulty of natural language 

understanding. Nevertheless, this is an active research area, called ques-

tion answering. Some search systems are starting to provide question 

answering services on some specific types of questions, e.g., definition 

questions, which ask for definitions of technical terms. Definition ques-

tions are usually easier to answer because there are strong linguistic pat-

terns indicating definition sentences, e.g., “defined as”, “refers to”, etc. 

Definitions can usually be extracted offline [339, 280]. 

The query operations module can range from very simple to very com-

plex. In the simplest case, it does nothing but just pass the query to the re-

trieval engine after some simple pre-processing, e.g., removal of stop-

words (words that occur very frequently in text but have little meaning, 

e.g., “the”, “a”, “in”, etc). We will discuss text pre-processing in Sect. 6.5. 

In more complex cases, it needs to transform natural language queries into 

executable queries. It may also accept user feedback and use it to expand 

and refine the original queries. This is usually called relevance feedback,

which will be discussed in Sect. 6.3.

The indexer is the module that indexes the original raw documents in 

some data structures to enable efficient retrieval. The result is the docu-



6.2 Information Retrieval Models      187 

ment index. In Sect. 6.6, we study a particular type of indexing scheme, 

called the inverted index, which is used in search engines and most IR 

systems. An inverted index is easy to build and very efficient to search.  

The retrieval system computes a relevance score for each indexed 

document to the query. According to their relevance scores, the documents 

are ranked and presented to the user. Note that it usually does not compare 

the user query with every document in the collection, which is too ineffi-

cient. Instead, only a small subset of the documents that contains at least 

one query term is first found from the index and relevance scores with the 

user query are then computed only for this subset of documents.  

6.2 Information Retrieval Models 

An IR model governs how a document and a query are represented and 

how the relevance of a document to a user query is defined. There are four 

main IR models: Boolean model, vector space model, language model and 

probabilistic model. The most commonly used models in IR systems and 

on the Web are the first three models, which we study in this section.  

Although these three models represent documents and queries differ-

ently, they used the same framework. They all treat each document or 

query as a “bag” of words or terms. Term sequence and position in a sen-

tence or a document are ignored. That is, a document is described by a set 

of distinctive terms. A term is simply a word whose semantics helps re-

member the document’s main themes. We should note that the term here 

may not be a natural language word in a dictionary. Each term is associ-

ated with a weight. Given a collection of documents D, let V = {t1, t2, ..., 

t|V|} be the set of distinctive terms in the collection, where ti is a term. The 

set V is usually called the vocabulary of the collection, and |V| is its size, 

i.e., the number of terms in V. A weight wij > 0 is associated with each 

term ti of a document dj D. For a term that does not appear in document 

dj, wij = 0. Each document dj is thus represented with a term vector,  

dj = (w1j, w2j, ..., w|V|j),

where each weight wij corresponds to the term ti V, and quantifies the 

level of importance of ti in document dj. The sequence of the components 

(or terms) in the vector is not significant. Note that following the conven-

tion of this book, a bold lower case letter is used to represent a vector.  

With this vector representation, a collection of documents is simply rep-

resented as a relational table (or a matrix). Each term is an attribute, and 

each weight is an attribute value. In different retrieval models, wij is com-

puted differently.  



188      6 Information Retrieval and Web Search

6.2.1 Boolean Model 

The Boolean model is one of the earliest and simplest information retrieval 

models. It uses the notion of exact matching to match documents to the 

user query. Both the query and the retrieval are based on Boolean algebra.  

Document Representation: In the Boolean model, documents and queries 

are represented as sets of terms. That is, each term is only considered pre-

sent or absent in a document. Using the vector representation of the docu-

ment above, the weight wij (  {0, 1}) of term ti in document dj is 1 if ti ap-

pears in document dj, and 0 otherwise, i.e.,  

.otherwise0

in  appears  if1 ji

ij

t
w

d
(1)

Boolean Queries: As we mentioned in Sect. 6.1, query terms are com-

bined logically using the Boolean operators AND, OR, and NOT, which 

have their usual semantics in logic. Thus, a Boolean query has a precise 

semantics. For instance, the query, ((x AND y) AND (NOT z)) says that a 

retrieved document must contain both the terms x and y but not z. As an-

other example, the query expression (x OR y) means that at least one of 

these terms must be in each retrieved document. Here, we assume that x, y

and z are terms. In general, they can be Boolean expressions themselves.  

Document Retrieval: Given a Boolean query, the system retrieves every 

document that makes the query logically true. Thus, the retrieval is based 

on the binary decision criterion, i.e., a document is either relevant or ir-

relevant. Intuitively, this is called exact match. There is no notion of par-

tial match or ranking of the retrieved documents. This is one of the major 

disadvantages of the Boolean model, which often leads to poor retrieval re-

sults. It is quite clear that the frequency of terms and their proximity con-

tribute significantly to the relevance of a document.  

Due to this problem, the Boolean model is seldom used alone in prac-

tice. Most search engines support some limited forms of Boolean retrieval 

using explicit inclusion and exclusion operators. For example, the fol-

lowing query can be issued to Google, ‘mining –data +“equipment price”’,

where + (inclusion) and – (exclusion) are similar to Boolean operators 

AND and NOT respectively. The operator OR may be supported as well.  

6.2.2 Vector Space Model  

This model is perhaps the best known and most widely used IR model.  



6.2 Information Retrieval Models      189 

Document Representation 

A document in the vector space model is represented as a weight vector, in 

which each component weight is computed based on some variation of TF 

or TF-IDF scheme. The weight wij of term ti in document dj is no longer in 

{0, 1} as in the Boolean model, but can be any number. 

Term Frequency (TF) Scheme: In this method, the weight of a term ti in 

document dj is the number of times that ti appears in document dj, denoted 

by fij. Normalization may also be applied (see Equation (2)).  

The shortcoming of the TF scheme is that it does not consider the situa-

tion where a term appears in many documents of the collection. Such a 

term may not be discriminative. 

TF-IDF Scheme: This is the most well known weighting scheme, where 

TF still stands for the term frequency and IDF the inverse document 

frequency. There are several variations of this scheme. Here we only give 

the most basic one.  

Let N be the total number of documents in the system or the collection 

and dfi be the number of documents in which term ti appears at least once. 

Let fij be the raw frequency count of term ti in document dj. Then, the 

normalized term frequency (denoted by tfij) of ti in dj is given by 

,
},...,,max{ ||21 jVjj

ij

ij
fff

f
tf (2)

where the maximum is computed over all terms that appear in document 

dj. If term ti does not appear in dj then tfij = 0. Recall that |V| is the vocabu-

lary size of the collection.  

The inverse document frequency (denoted by idfi) of term ti is given by: 

.log
i

i
df

N
idf (3)

The intuition here is that if a term appears in a large number of documents 

in the collection, it is probably not important or not discriminative. The fi-

nal TF-IDF term weight is given by: 

.iijij idftfw (4)

Queries

A query q is represented in exactly the same way as a document in the 

document collection. The term weight wiq of each term ti in q can also be 



190      6 Information Retrieval and Web Search

computed in the same way as in a normal document, or slightly differently. 

For example, Salton and Buckley [470] suggested the following: 

.log
},...,,max{

5.0
5.0

||21 iqVqq

iq

qi
df

N

fff

f
w (5)

Document Retrieval and Relevance Ranking 

It is often difficult to make a binary decision on whether a document is 

relevant to a given query. Unlike the Boolean model, the vector space 

model does not make such a decision. Instead, the documents are ranked 

according to their degrees of relevance to the query. One way to compute 

the degree of relevance is to calculate the similarity of the query q to each 

document dj in the document collection D. There are many similarity 

measures. The most well known one is the cosine similarity, which is the 

cosine of the angle between the query vector q and the document vector dj,

.
||||||||

),(
||

1

2||

1

2

||

1

V

i iq

V

i ij

V

i iqij

j

j

j

ww

ww
cosine

qd

qd
qd (6)

Cosine similarity is also widely used in text/document clustering.  

The dot product of the two vectors is another similarity measure, 

.),( qdqd jjsim (7)

Ranking of the documents is done using their similarity values. The top 

ranked documents are regarded as more relevant to the query.  

Another way to assess the degree of relevance is to directly compute a 

relevance score for each document to the query. The Okapi method and its 

variations are popular techniques in this setting. The Okapi retrieval for-

mula given here is based on that in [465, 493]. It has been shown that 

Okapi variations are more effective than cosine for short query retrieval.  

Since it is easier to present the formula directly using the “bag” of 

words notation of documents than vectors, document dj will be denoted by 

dj and query q will be denoted by q. Additional notations are as follows:  

ti is a term

fij is the raw frequency count of term ti in document dj
fiq is the raw frequency count of term ti in query q

N is the total number of documents in the collection 

dfi is the number of documents that contain the term ti
dlj is the document length (in bytes) of dj
avdl is the average document length of the collection 



6.2 Information Retrieval Models      191 

The Okapi relevance score of a document dj for a query q is: 

,
)1(

)1(

)1(

5.0

5.0
ln),(

2

2

1

1

, iq

iq

ij

j

ij

dqt i

i
j

fk

fk

f
avdl

dl
bbk

fk

df

dfN
qdokapi

ji

(8)

where k1 (between 1.0-2.0), b (usually 0.75) and k2 (between 1-1000) are 

parameters.  

Yet another score function is the pivoted normalization weighting

score function, denoted by pnw [493]:  

i

iq

dqt j

ij

j
df

N
f

avdl

dl
ss

f
qdpnw

ji

1
ln

)1(

))ln(1ln(1
),(

,

,
(9)

where s is a parameter (usually set to 0.2). Note that these are empirical 

functions based on intuitions and experimental evaluations. There are 

many variations of these functions used in practice.  

6.2.3 Statistical Language Model 

Statistical language models (or simply language models) are based on 

probability and have foundations in statistical theory. The basic idea of this 

approach to retrieval is simple. It first estimates a language model for each 

document, and then ranks documents by the likelihood of the query given 

the language model. Similar ideas have previously been used in natural 

language processing and speech recognition. The formulation and discus-

sion in this section is based on those in [595, 596]. Information retrieval 

using language models was first proposed by Ponte and Croft [448].  

Let the query q be a sequence of terms, q = q1q2…qm and the document 

collection D be a set of documents, D = {d1, d2, …, dN}. In the language 

modeling approach, we consider the probability of a query q as being 

“generated” by a probabilistic model based on a document dj, i.e., Pr(q|dj).

To rank documents in retrieval, we are interested in estimating the poste-

rior probability Pr(dj|q). Using the Bayes rule, we have  

)Pr(

)Pr()|Pr(
)|Pr(

q

ddq
qd

jj

j (10)

For ranking, Pr(q) is not needed as it is the same for every document. 

Pr(dj) is usually considered uniform and thus will not affect ranking. We 

only need to compute Pr(q|dj).

The language model used in most existing work is based on unigram, 



192      6 Information Retrieval and Web Search

i.e., only individual terms (words) are considered. That is, the model as-

sumes that each term (word) is generated independently, which is essen-

tially a multinomial distribution over words. The general case is the n-

gram model, where the nth term is conditioned on the previous n-1 terms.  

Based on the multinomial distribution and the unigram model, we have  

||

11

21 ,)|Pr()|Pr()|...Pr(
V

i

f

ji

m

i

jijm
iqdtdqdqqqq (11)

where fiq is the number of times that term ti occurs in q, and 
||

1
1)|Pr(

V

i ji dt . The retrieval problem is reduced to estimating Pr(ti|dj),

which can be the relative frequency,  

.
||

)|Pr(
j

ij

ji
d

f
dt (12)

Recall that fij is the number of times that term ti occurs in document dj. |dj|
denotes the total number of words in dj.

However, one problem with this estimation is that a term that does not 

appear in dj has the probability of 0, which underestimates the probability 

of the unseen term in the document. This situation is similar to text classi-

fication using the naïve Bayesian model (see Sect. 3.7). A non-zero prob-

ability is typically assigned to each unseen term in the document, which is 

called smoothing. Smoothing adjusts the estimates of probabilities to pro-

duce more accurate probabilities. The name smoothing comes from the 

fact that these techniques tend to make distributions more uniform, by ad-

justing low probabilities such as zero probabilities upward, and high prob-

abilities downward. Not only do smoothing methods aim to prevent zero 

probabilities, but they also attempt to improve the accuracy of the model as 

a whole. Traditional additive smoothing is     

.
||||

)|(Pr
j

ij

jiadd
dV

f
dt (13)

When  = 1, it is the Laplace smoothing and when 0 < < 1, it is the Lid-

stone smoothing. Many other more sophisticated smoothing methods can 

be found in [97, 596].  

6.3 Relevance Feedback 

To improve the retrieval effectiveness, researchers have proposed many 

techniques. Relevance feedback is one of the effective ones. It is a process 



6.3 Relevance Feedback      193 

where the user identifies some relevant and irrelevant documents in the ini-

tial list of retrieved documents, and the system then creates an expanded 

query by extracting some additional terms from the sample relevant and ir-

relevant documents for a second round of retrieval. The system may also 

produce a classification model using the user-identified relevant and ir-

relevant documents to classify the documents in the document collection 

into relevant and irrelevant documents. The relevance feedback process 

may be repeated until the user is satisfied with the retrieved result. 

The Rocchio Method 

This is one of the early and effective relevance feedback algorithms. It is 

based on the first approach above. That is, it uses the user-identified rele-

vant and irrelevant documents to expand the original query. The new (or 

expanded) query is then used to perform retrieval again.  

Let the original query vector be q, the set of relevant documents selected 

by the user be Dr, and the set of irrelevant documents be Dir. The expanded 

query qe is computed as follows, 

irirrr D

ir

irD

r

r

e
DD dd

d
||

d
||

qq , (14)

where ,  and  are parameters. Equation (14) simply augments the origi-

nal query vector q with additional terms from relevant documents. The 

original query q is still needed because it directly reflects the user’s infor-

mation need. Relevant documents are considered more important than ir-

relevant documents. The subtraction is used to reduce the influence of 

those terms that are not discriminative (i.e., they appear in both relevant 

and irrelevant documents), and those terms that appear in irrelevant docu-

ments only. The three parameters are set empirically. Note that a slight 

variation of the algorithm is one without the normalization of |Dr| and |Dir|. 

Both these methods are simple and efficient to compute, and usually pro-

duce good results. 

Machine Learning Methods 

Since we have a set of relevant and irrelevant documents, we can construct 

a classification model from them. Then the relevance feedback problem 

becomes a learning problem. Any supervised learning method may be 

used, e.g., naïve Bayesian classification and SVM. Similarity comparison 

with the original query is no longer needed. 

In fact, a variation of the Rocchio method above, called the Rocchio 

classification method, can be used for this purpose too. Building a Roc-



194      6 Information Retrieval and Web Search

chio classifier is done by constructing a prototype vector ci for each class i,

which is either relevant or irrelevant in this case (negative elements or 

components of the vector ci are usually set to 0): 

ii DDiDi

i
DDD dd d

d

||d

d

||
c

||||||||
, (15)

where Di is the set of documents of class i, and  and  are parameters. 

Using the TF-IDF term weighting scheme,  = 16 and = 4 usually work 

quite well. 

In classification, cosine similarity is applied. That is, each test document 

dt is compared with every prototype ci based on cosine similarity. dt is as-

signed to the class with the highest similarity value (Fig. 6.2).   

Algorithm

1 for each class i do

2 construct its prototype vector ci using Equation (15) 

3 endfor

4 for each test document dt do

5 the class of dt is ),(maxarg iti cosine cd

6 endfor

Fig. 6.2. Training and testing of a Rocchio classifier 

Apart from the above classic methods, the following learning techniques 

are also applicable:

Learning from Labeled and Unlabeled Examples (LU Learning): Since 

the number of user-selected relevant and irrelevant documents may be 

small, it can be difficult to build an accurate classifier. However, unlabeled 

examples, i.e., those documents that are not selected by the user, can be 

utilized to improve learning to produce a more accurate classifier. This fits 

the LU learning model exactly (see Sect. 5.1). The user-selected relevant 

and irrelevant documents form the small labeled training set.  

Learning from Positive and Unlabeled Examples (PU Learning): The 

two learning models mentioned above assume that the user can confidently 

identify both relevant and irrelevant documents. However, in some cases, 

the user only selects (or clicks) documents that he/she feels relevant based 

on the title or summary information (e.g., snippets in Web search), which 

are most likely to be true relevant documents, but does not indicate irrele-

vant documents. Those documents that are not selected by the user may 

not be treated as irrelevant because he/she has not seen them. Thus, they 

can only be regarded as unlabeled documents. This is called implicit feed-

back. In order to learn in this case, we can use PU learning, i.e., learning 



6.4 Evaluation Measures      195 

from positive and unlabeled examples (see Sect. 5.2). We regard the user-

selected documents as positive examples, and unselected documents as 

unlabeled examples. Researchers have experimented with this approach in 

the Web search context and obtained good results [128].  

Using Ranking SVM and Language Models: In the implicit feedback 

setting, a technique called ranking SVM is proposed in [260] to rank the 

unselected documents based on the selected documents. A language model 

based approach is also proposed in [487]. 

Pseudo-Relevance Feedback 

Pseudo-relevance feedback is another technique used to improve retrieval 

effectiveness. Its basic idea is to extract some terms (usually frequent 

terms) from the top-ranked documents and add them to the original query 

to form a new query for a second round of retrieval. Again, the process can 

be repeated until the user is satisfied with the final results. The main dif-

ference between this method and the relevance feedback method is that in 

this method, the user is not involved in the process. The approach simply 

assumes that the top-ranked documents are likely to be relevant. Through 

query expansion, some relevant documents missed in the initial round can 

be retrieved to improve the overall performance. Clearly, the effectiveness 

of this method relies on the quality of the selected expansion terms.  

6.4 Evaluation Measures 

Precision and recall measures have been described in Chap. 3 on super-

vised learning, where each document is classified to a specific class. In IR 

and Web search, usually no decision is made on whether a document is 

relevant or irrelevant to a query. Instead, a ranking of the documents is 

produced for the user. This section studies how to evaluate such rankings.  

Again, let the collection of documents in the database be D, and the total 

number of documents in D be N. Given a user query q, the retrieval algo-

rithm first computes relevance scores for all documents in D and then pro-

duce a ranking Rq of the documents based on the relevance scores, i.e.,  

,,...,,   : 21

q

N

qq

qR ddd (16)

where d1
q

D is the most relevant document to query q and d
q
N D is the 

most irrelevant document to query q.

Let Dq ( D) be the set of actual relevant documents of query q in D.

We can compute the precision and recall values at each di
q
 in the ranking.  



196      6 Information Retrieval and Web Search

Recall at rank position i or document di
q (denoted by r(i)) is the fraction of 

relevant documents from d1
q to di

q in Rq. Let the number of relevant docu-

ments from d1
q to di

q in Rq be si (  |Dq|) (|Dq| is the size of Dq). Then, 

.
||

)(
q

i

D

s
ir (17)

Precision at rank position i or document di
q (denoted by p(i)) is the frac-

tion of documents from d1
q to di

q in Rq that are relevant: 

i

s
ip i)( (18)

Example 1: We have a document collection D with 20 documents. Given 

a query q, we know that eight documents are relevant to q. A retrieval al-

gorithm produces the ranking (of all documents in D) shown in Fig. 6.3.  

Rank i +/ p(i) r(i)

1 + 1/1 = 100% 1/8 = 13% 

2 + 2/2 = 100% 2/8 = 25% 

3 + 3/3 = 100% 3/8 = 38% 

4 3/4 = 75% 3/8 = 38% 

5 + 4/5 = 80% 4/8 = 50% 

6 4/6 = 67% 4/8 = 50% 

7 + 5/7 = 71% 5/8 = 63% 

8 5/8 = 63% 5/8 = 63% 

9 + 6/9 = 67% 6/8 = 75% 

10 + 7/10 = 70% 7/8 = 88% 

11 7/11 = 63% 7/8 = 88% 

12 7/12 = 58% 7/8 = 88% 

13 + 8/13 = 62% 8/8 = 100% 

14 8/14 = 57% 8/8 = 100% 

15 8/15 = 53% 8/8 = 100% 

16 8/16 = 50% 8/8 = 100% 

17 8/17 = 53% 8/8 = 100% 

18 8/18 = 44% 8/8 = 100% 

19 8/19 = 42% 8/8 = 100% 

20 8/20 = 40% 8/8 = 100% 

Fig. 6.3. Precision and recall values at each rank position 

In column 1 of Fig. 6.3, 1 represents the highest rank and 20 represents 

the lowest rank. “+” and “ ” in column 2 indicate a relevant document and 

an irrelevant document respectively. The precision (p(i)) and recall (r(i)) 

values at each position i are given in columns 3 and 4.  



6.4 Evaluation Measures      197 

Average Precision: Sometimes we want a single precision to compare dif-

ferent retrieval algorithms on a query q. An average precision (pavg) can be 

computed based on the precision at each relevant document in the ranking,  

||

)(

q

Dd

avg
D

ip
p

q
q
i

.
(19)

For the ranking in Fig. 6.3 of Example 1, the average precision is 81%:  

%.81
8

%62%70%67%71%80%100%100%100
avgp (20)

Precision–Recall Curve: Based on the precision and recall values at each 

rank position, we can draw a precision–recall curve where the x-axis is the 

recall and the y-axis is the precision. Instead of using the precision and re-

call at each rank position, the curve is commonly plotted using 11 standard 

recall levels, 0%, 10%, 20%, …, 100%. 

Since we may not obtain exactly these recall levels in the ranking, inter-

polation is needed to obtain the precisions at these recall levels, which is 

done as follows: Let ri be a recall level, i  {0, 1, 2, …, 10}, and p(ri) be 

the precision at the recall level ri. p(ri) is computed with  

)(max)(
10

rprp rrri i
. (21)

That is, to interpolate precision at a particular recall level ri, we take the 

maximum precision of all recalls between level ri and level r10.

Example 2: Following Example 1, we obtain the interpolated precisions at 

all 11 recall levels in the table of Fig. 6.4. The precision-recall curve is 

shown on the right. 

i p(ri) ri
0 100% 0% 

1 100% 10% 

2 100% 20% 

3 100% 30% 

4 80% 40% 

5 80% 50% 

6 71% 60% 

7 70% 70% 

8 70% 80% 

9 62% 90% 

10 62% 100% 

Fig. 6.4. The precision-recall curve 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recall

P
re

c
is

io
n



198      6 Information Retrieval and Web Search

Comparing Different Algorithms: Frequently, we need to compare the 

retrieval results of different algorithms. We can draw their precision-recall 

curves together in the same figure for comparison. Figure 6.5 shows the 

curves of two algorithms on the same query and the same document collec-

tion. We observe that the precisions of one algorithm are better than those 

of the other at low recall levels, but are worse at high recall levels.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recall

P
re

c
is

io
n

Fig. 6.5. Comparison of two retrieval algorithms based on their precision-recall 

curves

Evaluation Using Multiple Queries: In most retrieval evaluations, we are 

interested in the performance of an algorithm on a large number of queries. 

The overall precision (denoted by )( irp ) at each recall level ri is computed 

as the average of individual precisions at that recall level, i.e.,  

),(
||

1
)(

||

1

i

Q

j

ji rp
Q

rp (22)

where Q is the set of all queries and pj(ri) is the precision of query j at the 

recall level ri. Using the average precision at each recall level, we can also 

draw a precision-recall curve.  

Although in theory precision and recall do not depend on each other, in 

practice a high recall is almost always achieved at the expense of preci-

sion, and a high precision is achieved at the expense of recall. Thus, preci-

sion and recall has a trade-off. Depending on the application, one may 

want a high precision or a high recall.  

One problem with precision and recall measures is that, in many appli-

cations, it can be very hard to determine the set of relevant documents Dq

for each query q. For example, on the Web, Dq is almost impossible to de-

termine because there are simply too many pages to manually inspect. 

Without Dq, the recall value cannot be computed. In fact, recall does not 

make much sense for Web search because the user seldom looks at pages 



6.5  Text and Web Page Pre-Processing      199 

ranked below 30. However, precision is critical, and it can be estimated for 

top ranked documents. Manual inspection of only the top 30 pages is rea-

sonable. The following precision computation is commonly used.  

Rank Precision: We compute the precision values at some selected rank 

positions. For a Web search engine, we usually compute precisions for the 

top 5, 10, 15, 20, 25 and 30 returned pages (as the user seldom looks at 

more than 30 pages). We assume that the number of relevant pages is more 

than 30. Following Example 1, we have p(5) = 80%, p(10) = 70%, p(15) = 

53%, and p(20) = 40%.  

We should note that precision is not the only measure for evaluating 

search ranking, reputation or quality of the top ranked pages are also very 

important as we will see later in this chapter and also in Chap. 7.

F-score: Another often used evaluation measure is the F-score, which we 

have used in Chap. 3. Here we can compute the F-score at each rank posi-

tion i. Recall that F-score is the harmonic mean of precision and recall:  

.
)()(

)()(2

)(

1

)(

1

2
)(

irip

irip

ipir

iF (23)

Finally, the precision and recall breakeven point is also a commonly 

used measure, which we have discussed in Sect. 3.3.2 in Chap. 3.  

6.5  Text and Web Page Pre-Processing 

Before the documents in a collection are used for retrieval, some pre-

processing tasks are usually performed. For traditional text documents (no 

HTML tags), the tasks are stopword removal, stemming, and handling of 

digits, hyphens, punctuations, and cases of letters. For Web pages, addi-

tional tasks such as HTML tag removal and identification of main content 

blocks also require careful considerations. We discuss them in this section.  

6.5.1 Stopword Removal 

Stopwords are frequently occurring and insignificant words in a language 

that help construct sentences but do not represent any content of the docu-

ments. Articles, prepositions and conjunctions and some pronouns are 

natural candidates. Common stopwords in English include:

a, about, an, are, as, at, be, by, for, from, how, in, is, of, on, or, 
that, the, these, this, to, was, what, when, where, who, will, with 



200      6 Information Retrieval and Web Search

Such words should be removed before documents are indexed and stored. 

Stopwords in the query are also removed before retrieval is performed.  

6.5.2 Stemming  

In many languages, a word has various syntactical forms depending on the 

contexts that it is used. For example, in English, nouns have plural forms, 

verbs have gerund forms (by adding “ing”), and verbs used in the past 

tense are different from the present tense. These are considered as syntactic 

variations of the same root form. Such variations cause low recall for a re-

trieval system because a relevant document may contain a variation of a 

query word but not the exact word itself. This problem can be partially 

dealt with by stemming.

Stemming refers to the process of reducing words to their stems or roots. 

A stem is the portion of a word that is left after removing its prefixes and 

suffixes. In English, most variants of a word are generated by the introduc-

tion of suffixes (rather than prefixes). Thus, stemming in English usually 

means suffix removal, or stripping. For example, “computer”, “comput-

ing”, and “compute” are reduced to “comput”. “walks”, “walking” and 

“walker” are reduced to “walk”. Stemming enables different variations of 

the word to be considered in retrieval, which improves the recall. There are 

several stemming algorithms, also known as stemmers. In English, the 

most popular stemmer is perhaps the Martin Porter's stemming algorithm 

[449], which uses a set of rules for stemming.  

Over the years, many researchers evaluated the advantages and disad-

vantages of using stemming. Clearly, stemming increases the recall and re-

duces the size of the indexing structure. However, it can hurt precision be-

cause many irrelevant documents may be considered relevant. For 

example, both “cop” and “cope” are reduced to the stem “cop”. However, 

if one is looking for documents about police, a document that contains 

only “cope” is unlikely to be relevant. Although many experiments have 

been conducted by researchers, there is still no conclusive evidence one 

way or the other. In practice, one should experiment with the document 

collection at hand to see whether stemming helps. 

6.5.3 Other Pre-Processing Tasks for Text 

Digits: Numbers and terms that contain digits are removed in traditional 

IR systems except some specific types, e.g., dates, times, and other pre-

specified types expressed with regular expressions. However, in search en-

gines, they are usually indexed. 



6.5  Text and Web Page Pre-Processing      201 

Hyphens: Breaking hyphens are usually applied to deal with inconsistency 

of usage. For example, some people use “state-of-the-art”, but others use 

“state of the art”. If the hyphens in the first case are removed, we eliminate 

the inconsistency problem. However, some words may have a hyphen as 

an integral part of the word, e.g., “Y-21”. Thus, in general, the system can 

follow a general rule (e.g., removing all hyphens) and also have some ex-

ceptions. Note that there are two types of removal, i.e., (1) each hyphen is 

replaced with a space and (2) each hyphen is simply removed without leav-

ing a space so that “state-of-the-art” may be replaced with “state of the 

art” or “stateoftheart”. In some systems both forms are indexed as it is 

hard to determine which is correct, e.g., if “pre-processing” is converted to 

“pre processing”, then some relevant pages will not be found if the query 

term is “preprocessing”.

Punctuation Marks: Punctuation can be dealt with similarly as hyphens.  

Case of Letters: All the letters are usually converted to either the upper or 

lower case.   

6.5.4 Web Page Pre-Processing 

We have indicated at the beginning of the section that Web pages are dif-

ferent from traditional text documents. Thus, additional pre-processing is 

needed. We describe some important ones below.  

1. Identifying different text fields: In HTML, there are different text 

fields, e.g., title, metadata, and body. Identifying them allows the re-

trieval system to treat terms in different fields differently. For example, 

in search engines terms that appear in the title field of a page are re-

garded as more important than terms that appear in other fields and are 

assigned higher weights because the title is usually a concise description 

of the page. In the body text, those emphasized terms (e.g., under header 

tags <h1>, <h2>, …, bold tag <b>, etc.) are also given higher weights.  

2. Identifying anchor text: Anchor text associated with a hyperlink is 

treated specially in search engines because the anchor text often repre-

sents a more accurate description of the information contained in the 

page pointed to by its link. In the case that the hyperlink points to an ex-

ternal page (not in the same site), it is especially valuable because it is a 

summary description of the page given by other people rather than the 

author/owner of the page, and is thus more trustworthy.  

3. Removing HTML tags: The removal of HTML tags can be dealt with 

similarly to punctuation. One issue needs careful consideration, which 

affects proximity queries and phrase queries. HTML is inherently a vis-



202      6 Information Retrieval and Web Search

ual presentation language. In a typical commercial page, information is 

presented in many rectangular blocks (see Fig. 6.6). Simply removing 

HTML tags may cause problems by joining text that should not be 

joined. For example, in Fig. 6.6, “cite this article” at the bottom of the 

left column will join “Main Page” on the right, but they should not be 

joined. They will cause problems for phrase queries and proximity que-

ries. This problem had not been dealt with satisfactorily by search en-

gines at the time when this book was written.   

4. Identifying main content blocks: A typical Web page, especially a 

commercial page, contains a large amount of information that is not part 

of the main content of the page. For example, it may contain banner ads, 

navigation bars, copyright notices, etc., which can lead to poor results 

for search and mining. In Fig. 6.6, the main content block of the page is 

the block containing “Today’s featured article.” It is not desirable to in-

dex anchor texts of the navigation links as a part of the content of this 

page. Several researchers have studied the problem of identifying main 

content blocks. They showed that search and data mining results can be 

Fig. 6.6. An example of a Web page from Wikipedia 



6.5  Text and Web Page Pre-Processing      203 

improved significantly if only the main content blocks are used. We 

briefly discuss two techniques for finding such blocks in Web pages.   

Partitioning based on visual cues: This method uses visual information 

to help find main content blocks in a page. Visual or rendering informa-

tion of each HTML element in a page can be obtained from the Web 

browser. For example, Internet Explorer provides an API that can output 

the X and Y coordinates of each element. A machine learning model can 

then be built based on the location and appearance features for identify-

ing main content blocks of pages. Of course, a large number of training 

examples need to be manually labeled (see [77, 495] for details). 

Tree matching: This method is based on the observation that in most 

commercial Web sites pages are generated by using some fixed tem-

plates. The method thus aims to find such hidden templates. Since 

HTML has a nested structure, it is thus easy to build a tag tree for each 

page. Tree matching of multiple pages from the same site can be per-

formed to find such templates. In Chap. 9, we will describe a tree 

matching algorithm for this purpose. Once a template is found, we can 

identify which blocks are likely to be the main content blocks based on 

the following observation: the text in main content blocks are usually 

quite different across different pages of the same template, but the non-

main content blocks are often quite similar in different pages. To deter-

mine the text similarity of corresponding blocks (which are sub-trees), 

the shingle method described in the next section can be used.  

6.5.5 Duplicate Detection  

Duplicate documents or pages are not a problem in traditional IR. How-

ever, in the context of the Web, it is a significant issue. There are different 

types of duplication of pages and contents on the Web.  

Copying a page is usually called duplication or replication, and copy-

ing an entire site is called mirroring. Duplicate pages and mirror sites

are often used to improve efficiency of browsing and file downloading 

worldwide due to limited bandwidth across different geographic regions 

and poor or unpredictable network performances. Of course, some dupli-

cate pages are the results of plagiarism. Detecting such pages and sites can 

reduce the index size and improve search results. 

Several methods can be used to find duplicate information. The simplest 

method is to hash the whole document, e.g., using the MD5 algorithm, or 

computing an aggregated number (e.g., checksum). However, these meth-

ods are only useful for detecting exact duplicates. On the Web, one seldom 



204      6 Information Retrieval and Web Search

finds exact duplicates. For example, even different mirror sites may have 

different URLs, different Web masters, different contact information, dif-

ferent advertisements to suit local needs, etc.  

One efficient duplicate detection technique is based on n-grams (also 

called shingles). An n-gram is simply a consecutive sequence of words of 

a fixed window size n. For example, the sentence, “John went to school 

with his brother,” can be represented with five 3-gram phrases “John went 

to”, “went to school”, “to school with”, “school with his”, and “with his 

brother”. Note that 1-gram is simply the individual words.  

Let Sn(d) be the set of distinctive n-grams (or shingles) contained in 

document d. Each n-gram may be coded with a number or a MD5 hash 

(which is usually a 32-digit hexadecimal number). Given the n-gram repre-

sentations of the two documents d1 and d2, Sn(d1) and Sn(d2), the Jaccard 

coefficient can be used to compute the similarity of the two documents,  

|)()(|

|)()(|
),(

21

21
21

dSdS

dSdS
ddsim

nn

nn . (24)

A threshold is used to determine whether d1 and d2 are likely to be dupli-

cates of each other. For a particular application, the window size n and the 

similarity threshold are chosen through experiments.  

6.6 Inverted Index and Its Compression 

The basic method of Web search and traditional IR is to find documents 

that contain the terms in the user query. Given a user query, one option is 

to scan the document database sequentially to find the documents that con-

tain the query terms. However, this method is obviously impractical for a 

large collection, such as the Web. Another option is to build some data 

structures (called indices) from the document collection to speed up re-

trieval or search. There are many index schemes for text [31]. The in-

verted index, which has been shown superior to most other indexing 

schemes, is a popular one. It is perhaps the most important index method 

used in search engines. This indexing scheme not only allows efficient re-

trieval of documents that contain query terms, but also very fast to build.  

6.6.1 Inverted Index 

In its simplest form, the inverted index of a document collection is basi-

cally a data structure that attaches each distinctive term with a list of all 

documents that contains the term. Thus, in retrieval, it takes constant time 



6.6 Inverted Index and Its Compression      205 

to find the documents that contains a query term. Finding documents con-

taining multiple query terms is also easy as we will see later.  

Given a set of documents, D = {d1, d2, …, dN}, and each document has a 

unique identifier (ID). An inverted index consists of two parts: a vocabu-

lary V, containing all the distinct terms in the document set, and for each 

distinct term ti an inverted list of postings. Each posting stores the ID 

(denoted by idj) of the document dj that contains term ti and other pieces of 

information about term ti in document dj. Depending on the need of the re-

trieval or ranking algorithm, different pieces of information may be in-

cluded. For example, to support phrase and proximity search, a posting for 

a term ti usually consists of the following, 

<idj, fij, [o1, o2, …, o| fij|
]> 

where idj is the ID of document dj that contains the term ti, fij is the fre-

quency count of ti in dj, and ok are the offsets (or positions) of term ti in dj.

Postings of a term are sorted in increasing order based on the idj’s and so 

are the offsets in each posting (see Example 3). This facilitates compres-

sion of the inverted index as we will see in Sect. 6.6.4.   

Example 3: We have three documents of id1, id2, and id3:

id1: Web mining is useful. 
 1 2 3 4

id2: Usage mining applications. 
 1 2 3 

id3: Web structure mining studies the Web hyperlink structure.  
 1 2 3 4 5 6 7 8 

The numbers below each document are the offset position of each word. 

The vocabulary is the set:  

{Web, mining, useful, applications, usage, structure, studies, hyperlink} 

Stopwords “is” and “the” have been removed, but no stemming is applied. 

Figure 6.7 shows two inverted indices.  

Applications: id2 Applications: <id2, 1, [3]> 
Hyperlink: id3 Hyperlink: <id3, 1, [7]> 
Mining: id1, id2, id3  Mining:  <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]> 
Structure: id3 Structure: <id3, 2, [2, 8]> 
Studies: id3 Studies: <id3, 1, [4]> 
Usage: id2 Usage: <id2, 1, [1]> 
Useful: id1 Useful: <id1, 1, [4]> 
Web:  id1, id3  Web:  <id1, 1, [1]>, <id3, 2, [1, 6]> 

(A) (B) 

Fig. 6.7. Two inverted indices: a simple version and a more complex version 



206      6 Information Retrieval and Web Search

Figure 6.7(A) is a simple version, where each term is attached with only an 

inverted list of IDs of the documents that contain the term. Each inverted 

list in Fig. 6.7(B) is more complex as it contains additional information, 

i.e., the frequency count of the term and its positions in each document. 

Note that we use idi as the document IDs to distinguish them from offsets. 

In an actual implementation, they may also be positive integers. Note also 

that a posting can contain other types of information depending on the 

need of the retrieval or search algorithm (see Sect. 6.8).  

6.6.2 Search Using an Inverted Index 

Queries are evaluated by first fetching the inverted lists of the query terms, 

and then processing them to find the documents that contain all (or some) 

terms. Specifically, given the query terms, searching for relevant docu-

ments in the inverted index consists of three main steps: 

Step 1 (vocabulary search): This step finds each query term in the vo-

cabulary, which gives the inverted list of each term. To speed up the 

search, the vocabulary usually resides in the main memory. Various in-

dexing methods, e.g., hashing, tries or B-tree, can be used to speed up 

the search. Lexicographical ordering may also be employed due to its 

space efficiency. Then the binary search method can be applied. The 

complexity is O(log|V|), where |V| is the vocabulary size.  

If the query contains only a single term, this step gives all the relevant 

documents and the algorithm then goes to step 3. If the query contains 

multiple terms, the algorithm proceeds to step 2.  

Step 2 (results merging): After the inverted list of each term is found, 

merging of the lists is performed to find their intersection, i.e., the set of 

documents containing all query terms. Merging simply traverses all the 

lists in synchronization to check whether each document contains all 

query terms. One main heuristic is to use the shortest list as the base to 

merge with the other longer lists. For each posting in the shortest list, a 

binary search may be applied to find it in each longer list. Note that par-

tial match (i.e., documents containing only some of the query terms) can 

be achieved as well in a similar way, which is more useful in practice. 

Usually, the whole inverted index cannot fit in memory, so part of it 

is cached in memory for efficiency. Determining which part to cache in-

volves analysis of query logs to find frequent query terms. The inverted 

lists of these frequent query terms can be cached in memory.    

Step 3 (Rank score computation): This step computes a rank (or rele-

vance) score for each document based on a relevance function (e.g., 



6.6 Inverted Index and Its Compression      207 

okapi or cosine), which may also consider the phrase and term prox-

imity information. The score is then used in the final ranking.   

Example 4: Using the inverted index built in Fig. 6.7(B), we want to 

search for “web mining” (the query). In step 1, two inverted lists are found:  

Mining:  <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]> 
Web:  <id1, 1, [1]>, <id3, 2, [1, 6]> 

In step 2, the algorithm traverses the two lists and finds documents con-

taining both words (documents id1 and id3). The word positions are also re-

trieved. In step 3, we compute the rank scores. Considering the proximity 

and the sequence of words, we give id1 a higher rank (or relevance) score 

than id3 as “web” and “mining” are next to each other in id1 and in the same 

sequence as that in the query. Different search engines may use different 

algorithms to combine these factors.  

6.6.3 Index Construction 

The construction of an inverted index is quite simple and can be done effi-

ciently using a trie data structure among many others. The time complexity 

of the index construction is O(T), where T is the number of all terms (in-

cluding duplicates) in the document collection (after pre-processing).  

For each document, the algorithm scans it sequentially and for each 

term, it finds the term in the trie. If it is found, the document ID and other 

information (e.g., the offset of the term) are added to the inverted list of the 

term. If the term is not found, a new leaf is created to represent the term.  

Example 5: Let us build an inverted index for the three documents in Ex-

ample 3, which are reproduced below for easy reference. Figure 6.8 shows 

the vocabulary trie and the inverted lists for all terms.  

id1: Web mining is useful. 
 1 2 3 4

id2: Usage mining applications. 
 1 2 3  

id3: Web structure mining studies the Web hyperlink structure  
 1 2 3 4 5 6 7 8 

To build the index efficiently, the trie is usually stored in memory. 

However, in the context of the Web, the whole index will not fit in the 

main memory. The following technique can be applied.  

We follow the above algorithm to build the index until the memory is 

full. The partial index I1 obtained so far is written on the disk. Then, we 

process the subsequent documents and build the partial index I2 in memory, 

and so on. After all documents have been processed, we have k partial in-



208      6 Information Retrieval and Web Search

dices, I1, I2, …, Ik, on disk. We then merge the partial indices in a hierar-

chical manner. That is, we first perform pair-wise merges of I1 and I2, I3
and I4, and so on. This gives us larger indices I1-2, I3-4 and so on. After the 

first level merging is complete, we proceed to the second level merging, 

i.e., we merge I1-2 and I3-4, I5-6 and I7-8 and so on. This process continues 

until all the partial indices are merged into a single index. Each merge is 

fairly straightforward because the vocabulary in each partial index is sorted 

by the trie construction. The complexity of each merge is thus linear in the 

number of terms in both partial indices. Since each level needs a linear 

process of the whole index, the complete merging process takes O(klog k)

time. To reduce the disk space requirement, whenever a new partial index 

is generated, we can merge it with a previously merged index. That is, 

when we have I1 and I2, we can merge them immediately to produce I1-2,

and when I3 is produced, it is merged with I1-2 to produce I1-2-3 and so on.  

Fig. 6.8. The vocabulary trie and the inverted lists 

Instead of using a trie, an alternative method is to use an in-memory 

hash table (or other data structures) for terms. The algorithm is quite 

straightforward and will not be discussed further.

On the Web, an important issue is that pages are constantly added, 

modified or deleted. It may be quite inefficient to modify the main index 

because a single page change can require updates to a large number of re-

cords of the index. One simple solution is to construct two additional indi-

ces, one for added pages and one for deleted pages. Modification can be 

regarded as a deletion and then an addition. Given a user query, it is 

searched in the main index and also in the two auxiliary indices. Let the 

pages returned from the search in the main index be D0, the pages returned 

from the search in the index of added pages be D+ and the pages returned 

from the search in the index of deleted pages be D–. Then, the final results 

returned to the user is (D0 D+) – D. When the two auxiliary indices be-

come too large, they can be merged into the main index.    

structure: <id3, 2, [2, 8]>

useful: <id1, 1, [4]>

hyperlink: <id3, 1, [7]>

mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]>

usage: <id2, 1, [2]>

web: <id1, 1, [1]>, <id3, 2, [1, 6]>

applications: <id2, 1, [3]>

studies: <id3, 1, [4]>

‘a’

‘s’

‘m’

‘h’

‘u’

‘u’

‘r’

‘t’

‘s’
‘e’

‘w’
‘a’



6.6 Inverted Index and Its Compression      209 

6.6.4 Index Compression  

An inverted index can be very large. In order to speed up the search, it 

should reside in memory as much as possible to avoid disk I/O. Because of 

this, reducing the index size becomes an important issue. A natural solu-

tion to this is index compression, which aims to represent the same infor-

mation with fewer bits or bytes. Using compression, the size of an inverted 

index can be reduced dramatically. In the lossless compression, the origi-

nal index can also be reconstructed exactly using the compressed version. 

Lossless compression methods are the focus of this section.  

The inverted index is quite amiable to compression. Since the main 

space used by an inverted index is for the storage of document IDs and off-

sets of each term, we thus want to reduce this space requirement. Since all 

the information is represented with positive integers, we only discuss inte-

ger compression techniques in this section. 

Without compression, on most architectures an integer has a fixed-size 

representation of four bytes (32 bits). However, few integers need 4 bytes 

to represent, so a more compact representation (compression) is clearly 

possible. There are generally two classes of compression schemes for in-

verted lists: the variable-bit scheme and the variable-byte scheme.

In the variable-bit (also called bitwise) scheme, an integer is represented 

with an integral number of bits. Well known bitwise methods include 

unary coding, Elias gamma coding and delta coding [161], and Golomb 

coding [202]. In the variable-byte scheme, an integer is stored in an inte-

gral number of bytes, where each byte has 8 bits. A simple bytewise 

scheme is the variable-byte coding [547]. These coding schemes basically 

map integers onto self-delimiting binary codewords (bits), i.e., the start bit 

and the end bit of each integer can be detected with no additional delimit-

ers or markers. 

An interesting feature of the inverted index makes compression even 

more effective. Since document IDs in each inverted list are sorted in in-

creasing order, we can store the difference between any two adjacent 

document IDs, idi and idi+1, where idi+1> idi, instead of the actual IDs. This 

difference is called the gap between idi and idi+1. The gap is a smaller 

number than idi+1 and thus requires fewer bits. In search, if the algorithm 

linearly traverses each inverted list, document IDs can be recovered easily. 

Since offsets in each posting are also sorted, they can be stored similarly.  

For example, the sorted document IDs are: 4, 10, 300, and 305. They 

can be represented with gaps, 4, 6, 290 and 5. Given the gap list 4, 6, 290 

and 5, it is easy to recover the original document IDs, 4, 10, 300, and 305. 

We note that for frequent terms (which appear in a large number of docu-

ments) the gaps are small and can be encoded with short codes (fewer 



210      6 Information Retrieval and Web Search

bits). For infrequent or rare terms, the gaps can be large, but they do not 

use up much space due to the fact that only a small number of documents 

contain them. Storing gaps can significantly reduce the index size. 

We now discuss each of the coding schemes in detail. Each scheme in-

cludes a method for coding (or compression) and a method for decoding

(decompression).

Unary Coding  

Unary coding is simple. It represents a number x with x 1 bits of zeros 

followed by a bit of one. For example, 5 is represented as 00001. The one 

bit is simply the delimitor. Decoding is also straightforward. This scheme 

is effective for very small numbers, but wasteful for large numbers. It is 

thus seldom used alone in practice. 

Table 6.1 shows example codes of different coding schemes for 10 

decimal integers. Column 2 shows the unary code for each integer.  

Table 6.1: Example codes for integers of different coding schemes: Spacing in the 

Elias, Golomb, and variable-byte codes separates the prefix of the code from the suffix.

   Elias  Elias  Golomb  Golomb  Variable  

Decimal  Unary Gamma  Delta  (b = 3)  (b = 10)  byte 

1  1  1  1  1 10  1 001  0000001 0 

2  01  0 10  0 100  1 11  1 010  0000010 0 

3  001  0 11  0 101  01 0  1 011  0000011 0 

4  0001  00 100  0 1100  01 10  1 100  0000100 0 

5  00001  00 101  0 1101  01 11  1 101  0000101 0 

6  000001  00 110  0 1110  001 0  1 1100  0000110 0 

7  0000001  00 111  0 1111  001 10  1 1101  0000111 0 

8  00000001  000 1000  00 100000  001 11  1 1110  0001000 0 

9  000000001  000 1001  00 100001  0001 0  1 1111  0001001 0 

10  0000000001 000 1010  00 100010  0001 10  01 000  0001010 0 

Elias Gamma Coding 

Coding: In the Elias gamma coding, a positive integer x is represented by: 

1+ log2x  in unary (i.e., log2x  0-bits followed by a 1-bit), followed by the 

binary representation of x without its most significant bit. Note that 

1+ log2x  is simply the number of bits of x in binary. The coding can also 

be described with the following two steps:  

1. Write x in binary. 

2. Subtract 1 from the number of bits written in step 1 and prepend that 

many zeros.  



6.6 Inverted Index and Its Compression      211 

Example 6: The number 9 is represented by 0001001, since 1+ log29  = 4, 

or 0001 in unary, and 9 is 001 in binary with the most significant bit re-

moved. Alternatively, we first write 9 in binary, which is 1001 with 4 bits, 

and then prepend three zeros. In this way, 1 is represented by 1 (in one bit), 

and 2 is represented by 010. Additional examples are shown in column 3 

of Table 6.1. 

Decoding: We decode an Elias gamma-coded integer in two steps: 

1. Read and count zeroes from the stream until we reach the first one. Call 

this count of zeroes K.

2. Consider the one that was reached to be the first digit of the integer, 

with a value of 2K, read the remaining K bits of the integer. 

Example 7: To decompress 0001001, we first read all zero bits from the 

beginning until we see a bit of 1. We have K = 3 zero bits. We then include 

the 1 bit with the following 3 bits, which give us 1001 (binary for 9).  

 Gamma coding is efficient for small integers but is not suited to large in-

tegers for which the parameterized Golomb code or the Elias delta code is 

more suitable. 

Elias Delta Coding 

Elias delta codes are somewhat longer than gamma codes for small inte-

gers, but for larger integers such as document numbers in an index of Web 

pages, the situation is reversed.

Coding: In the Elias delta coding, a positive integer x is stored with the 

gamma code representation of 1+ log2x , followed by the binary represen-

tation of x less the most significant bit. 

Example 8: Let us code the number 9. Since 1+ log2x  = 4, we have its 

gamma code 00100 for 4. Since 9’s binary representation less the most 

significant bit is 001, we have the delta code of 00100001 for 9. Additional 

examples are shown in column 4 of Table 6.1.  

Decoding: To decode an Elias delta-coded integer x, we first decode the 

gamma-code part 1+ log2x  as the magnitude M (the number of bits of x in 

binary), and then retrieve the binary representation of x less the most sig-

nificant bit. Specifically, we use the following steps:  

1. Read and count zeroes from the stream until you reach the first one. Call 

this count of zeroes L.

2. Considering the one that was reached to be the first bit of an integer, 

with a value of 2L, read the remaining L digits of the integer. This is the 



212      6 Information Retrieval and Web Search

integer M.

3. Put a one in the first place of our final output, representing the value 2M.

Read and append the following M-1 bits.  

Example 9: We want to decode 00100001. We can see that L = 2 after step 

1, and after step 2, we have read and consumed 5 bits. We also obtain M = 

4 (100 in binary). Finally, we prepend 1 to the M-1 bits (which is 001) to 

give 1001, which is 9 in binary.  

While Elias codes yield acceptable compression and fast decoding, a 

better performance in both aspects is possible with the Golomb coding.     

Golomb Coding 

The Golomb coding is a form of parameterized coding in which integers to 

be coded are stored as values relative to a constant b. Several variations of 

the original Golomb scheme exist, which save some bits in coding com-

pared to the original scheme. We describe one version here.  

Coding: A positive integer x is represented in two parts:  

1. The first part is a unary representation of q+1, where q is the quotient 

(x/b) , and

2. The second part is a special binary representation of the remainder r = 

x qb. Note that there are b possible remainders. For example, if b = 3, 

the possible remainders will be 0, 1, and 2.  

The binary representation of a remainder requires log2b  or log2b  bits. 

Clearly, it is not possible to write every remainder in log2b  bits in binary. 

To save space, we want to write the first few remainders using log2b  bits 

and the rest using log2b  bits. We must do so such that the decoder knows 

when log2b  bits are used and when log2b  bits are used. Let i = log2b .

We code the first d remainders using i bits,  

d  = 2i+1 – b. (25) 

It is worth noting that these d remainders are all less than d. The rest of 

the remainders are coded with log2b  bits and are all greater than or equal 

to d. They are coded using a special binary code (also called a fixed prefix 

code) with log2b  (or i+1) bits.  

Example 10: For b = 3, to code x = 9, we have the quotient q = 9/3  = 3. 

For remainder, we have i = log2 3  = 1 and d = 1. Note that for b = 3, there 

are three remainders, i.e., 0, 1, and 2, which are coded as 0, 10, and 11 re-

spectively. The remainder for 9 is r = 9  3  3 = 0. The final code for 9 is 

00010. Additional examples for b = 3 are shown in column 5 of Table 6.1. 



6.6 Inverted Index and Its Compression      213 

For b = 10, to code x = 9, we have the quotient q = 9/10  = 0. For re-

mainder, we have i = log2 10  = 3 and d = 6. Note that for b = 10, there are 

10 remainders, i.e., 0, 1, 2, …, 10, which are coded as 000, 001, 010, 011, 

100, 101, 1100, 1101, 1110, 1111 respectively. The remainder of 9 is r = 9 

 0  5 = 9. The final code for 9 is 11111. Additional examples for b = 10 

are shown in column 6 of Table 6.1. 

We can see that the first d remainders are standard binary codes, but the 

rest are not. They are generated using a tree instead. Figure 6.9 shows an 

example based on b = 5. The leaves are the five remainders. The first three 

remainders (0, 1, 2) are in the standard binary code, and the rest (3 and 4) 

have an additional bit. It is important to note that the first 2 bits (i = 2) of 

the remainder 3 (the first remainder coded in i+1 bits) is 11, which is 3 

(i.e., d) in binary. This information is crucial for decoding because it en-

ables the algorithm to know when i+1 bits are used. We also notice that d

is completely determined by b, which helps decoding. 

Fig. 6.9. The coding tree for b = 5 

If b is a power of 2 (called Golomb–Rice coding), i.e., b = 2k for integer 

k  0, every remainder is coded with the same number of bits because 

log2b  = log2b . This is also easy to see from Equation (25), i.e., d = 2k.

Decoding: To decode a Golomb-coded integer x, we use the following 

steps:

1. Decode unary-coded quotient q (the relevant bits are comsumed). 

2. Compute i = log2 b  and d = 2i+1 – b.

3. Retrieve the next i bits and assign it to r.

4. If r d then 

 retrieve one more bit and append it to r at the end; 

r = r – d.

5. Return x = qb + r.

Some explanation is in order for step 4. As we discussed above, if r d
we need i+1 bits to code the remainder. The first line of step 4 retrieves the 

additional bit and appends it to r. The second line obtains the true value of 

1

0 1 

0 1 0

1 0 10

3

2

4



214      6 Information Retrieval and Web Search

the remainder r.

Example 11: We want to decode 11111 for b = 10. We see that q = 0 be-

cause there is no zero at the beginning. The first bit is consumed. We know 

that i = log2 10  = 3 and d = 6. We then retrieve the next three bits, 111, 

which is 7 in decimal, and assign it to r (= 111). Since 7 > 6 (which is d),

we retrieve one more bit, which is 1, and r is now 1111 (15 in decimal). 

The new r = r – d = 15 – 6 = 9. Finally, x = qb + r = 0 + 9 = 9. 

Now we discuss the selection of b for each term. For gap compression, 

Witten et al. [551] reported that a suitable b is

,69.0
tn

N
b

(26)

where N is the total number of documents and nt is the number of docu-

ments that contain term t.

Variable-Byte Coding  

Coding: In this method, seven bits in each byte are used to code an inte-

ger, with the least significant bit set to 0 in the last byte, or to 1 if further 

bytes follow. In this way, small integers are represented efficiently. For 

example, 135 is represented in two bytes, since it lies in the range 27 and 

214, as 00000011 00001110. Additional examples are shown in column 6 

of Table 6.1. 

Decoding: Decoding is performed in two steps: 

1. Read all bytes until a byte with the zero last bit is seen.  

2. Remove the least significant bit from each byte read so far and concate-

nate the remaining bits.  

For example, 00000011 00001110 is decoded to 00000010000111, which 

is 135. 

Finally, experimental results in [547] show that non-parameterized Elias 

coding is generally not as space-efficient or as fast as parameterized 

Golomb coding for retrieval. Gamma coding does not work well. Variable-

byte integers are often faster than variable-bit integers, despite having 

higher storage costs, because fewer CPU operations are required to decode 

variable-byte integers and they are byte-aligned on disk. A suitable com-

pression technique can allow retrieval to be up to twice as fast than without 

compression, while the space requirement averages 20% – 25% of the cost 

of storing uncompressed integers.  



6.7 Latent Semantic Indexing      215 

6.7 Latent Semantic Indexing 

The retrieval models discussed so far are based on keyword or term match-

ing, i.e., matching terms in the user query with those in the documents. 

However, many concepts or objects can be described in multiple ways (us-

ing different words) due to the context and people’s language habits. If a 

user query uses different words from the words used in a document, the 

document will not be retrieved although it may be relevant because the 

document uses some symonyms of the words in the user query. This 

causes low recall. For example, “picture”, “image” and “photo” are syno-

nyms in the context of digital cameras. If the user query only has the word 

“picture”, relevant documents that contain “image” or “photo” but not 

“picture” will not be retrieved. 

Latent semantic indexing (LSI), proposed by Deerwester et al. [125], 

aims to deal with this problem through the identification of statistical asso-

ciations of terms. It is assumed that there is some underlying latent seman-

tic structure in the data that is partially obscured by the randomness of 

word choice. It then uses a statistical technique, called singular value de-

composition (SVD) [203], to estimate this latent structure, and to remove 

the “noise”. The results of this decomposition are descriptions of terms and 

documents based on the latent semantic structure derived from SVD. This 

structure is also called the hidden “concept” space, which associates syn-

tactically different but semantically similar terms and documents. These 

transformed terms and documents in the “concept” space are then used in 

retrieval, not the original terms or documents. Furthermore, the query is 

also transformed into the “concept” space before retrieval.

Let D be the text collection, the number of distinctive words in D be m

and the number of documents in D be n. LSI starts with an m n term-

document matrix A. Each row of A represents a term and each column 

represents a document. The matrix may be computed in various ways, e.g., 

using term frequency or TF-IDF values. We use term frequency as an ex-

ample in this section. Thus, each entry or cell of the matrix A, denoted by 

Aij, is the number of times that term i occurs in document j.

6.7.1 Singular Value Decomposition  

What SVD does is to factor matrix A (a m n matrix) into the product of 

three matrices, i.e., 

,TVUA (27)



216      6 Information Retrieval and Web Search

where

U is a m r matrix and its columns, called right singular vectors, are ei-

genvectors associated with the r non-zero eigenvalues of AAT. Fur-

thermore, the columns of U are unit orthogonal vectors, i.e., UT
U = I

(identity matrix). 

V is an n r matrix and its columns, called right singular vectors, are 

eigenvectors associated with the r non-zero eigenvalues of AT
A. The 

columns of V are also unit orthogonal vectors, i.e., VT
V = I.

  is a r r diagonal matrix,  = diag( 1, 2, …, r), i > 0. 1, 2, …, 

and r, called singular values, are the non-negative square roots of 

the r (non-zero) eigenvalues of AAT. They are arranged in decreasing 

order, i.e., 1 2  … r > 0.

We note that initially U is in fact an m m matrix and V an n n ma-

trix and  an m n diagonal matrix.  ’s diagonal consists of nonnega-

tive eigenvalues of AAT or AT
A. However, due to zero eigenvalues, 

has zero-valued rows and columns. Matrix multiplication tells us that 

those zero-valued rows and columns from  can be dropped. Then, 

the last m r columns in U and the last n r columns in V can also be 

dropped.

m is the number of row (terms) in A, representing the number of terms.

n is the number of columns in A, representing the number of documents.

r is the rank of A, r  min(m, n).

The singular value decomposition of A always exists and is unique up to 

1. allowable permutations of columns of U and V and elements of  leav-

ing it still diagonal; that is, columns i and j of may be interchanged iff

row i and j of are interchanged, and columns i and j of U and V are in-

terchanged.

2. sign (+/ ) flip in U and V.

An important feature of SVD is that we can delete some insignificant 

dimensions in the transformed (or “concept”) space to optimally (in the 

least square sense) approximate matrix A. The significance of the dimen-

sions is indicated by the magnitudes of the singular values in , which are 

already sorted. In the context of information retrieval, the insignificant di-

mensions may represent “noisy” in the data, and should be removed. Let us 

use only the k largest singular values in and set the remaining small ones 

to zero. The approximated matrix of A is denoted by Ak. We can also re-

duce the size of the matrices , U and V by deleting the last r k rows and 

columns from , the last r k columns in U and the last r k columns in V.

We then obtain  



6.7 Latent Semantic Indexing      217 

,
T

kkkk VUA (28)

which means that we use the k-largest singular triplets to approximate the 

original (and somewhat “noisy”) term-document matrix A. The new space 

is called the k-concept space. Figure 6.10 shows the original matrices and 

the reduced matrices schematically.

Fig. 6.10. The schematic representation of A and Ak

It is critical that the LSI method does not re-construct the original term-

document matrix A perfectly. The truncated SVD captures most of the im-

portant underlying structures in the association of terms and documents, 

yet at the same time removes the noise or variability in word usage that 

plagues keyword matching retrieval methods. 

Intuitive Idea of LSI: The intuition of LSI is that SVD rotates the axes of 

m-dimensional space of A such that the first axis runs along the largest 

variation (variance) among the documents, the second axis runs along the 

second largest variation (variance) and so on. Figure 6.11 shows an exam-

ple.

The original x-y space is mapped to the x -y  space generated by SVD. 

We can see that x and y are clearly correlated. In our retrieval context, each 

data point represents a document and each axis (x or y) in the original 

space represents a term. Hence, the two terms are correlated or co-occur 

frequently. In the SVD, the direction of x  in which the data has the largest 

variation is represented by the first column vector of U, and the direction 

of y  is represented by the second column vector of U. V
T represents the 

documents in the transformed “concept” space. The singular values in 

are simply scaling factors. 

We observe that y  direction is insignificant, and may represent some 

“noise”, so we can remove it. Then, every data point (document) is pro-

=

Term vectors 

k

k

k

k

Terms 

Documents

V
T

Document

vectors 

m n r nm r r r

UA/Ak Uk

Vk
T

k



218      6 Information Retrieval and Web Search

jected to x . We have an outlier document di that contains term x, but not 

term y. However, if it is projected to x , it becomes closer to other points. 

Let us see what happens if we have a query q represented with a star in 

Fig. 6.11, which contains only a single term “y”. Using the traditional ex-

act term matching, di is not relevant because “y” does not appear in di.

However, in the new space after projection, they are quite close or similar.  

Fig. 6.11. Intuition of the LSI.  

6.7.2 Query and Retrieval  

Given a user query q (represented by a column vector as those in A), it is 

first converted into a document in the k-concept space, denoted by qk. This 

transformation is necessary because SVD has transformed the original 

documents into the k-concept space and stored them in Vk. The idea is that 

q is treated as a new document in the original space represented as a col-

umn in A, and then mapped to qk as an additional document (or column) in 

Vk
T. From Equation (28), it is easy to see that  

  .
T

kkk qq U (29)

Since the columns in U are unit orthogonal vectors, Uk
T
Uk = I. Thus,

 .
T

kk

T

k qqU (30)

As the inverse of a diagonal matrix is still a diagonal matrix, and each 

entry on the diagonal is 1/ i (1 i k), if it is multiplied on both sides of 

Equation (30), we obtain,  

.
1 T

k

T

k

-

k qqU (31)

Finally, we get the following (notice that the transpose of a diagonal 

matrix is itself),  

.
1-

kk

T

k Uqq (32)

x

x'

y’

y

di

q



6.7 Latent Semantic Indexing      219 

For retrieval, we simply compare qk with each document (row) in Vk us-

ing a similarity measure, e.g., the cosine similarity. Recall that each row of 

Vk (or each column of Vk
T ) corresponds to a document (column) in A. This 

method has been used traditionally.  

Alternatively, since kVk
T (not Vk

T) represents the documents in the 

transformed k-concept space, we can compare the similarity of the query 

document in the transformed space, which is kqk
T, and each transformed 

document in kVk
T for retrieval. The difference between the two methods is 

obvious. This latter method considers scaling effects of the singular values 

in k, but the former does not. However, it is not clear which method per-

forms better as I know of no reported study on this alternative method. 

6.7.3 An Example 

Example 12: We will use the example in [125] to illustrate the process. 

The document collection has the following nine documents. The first five 

documents are related to human computer interaction, and the last four 

documents are related to graphs. To reduce the size of the problem, only 

the underlined terms are used in our computation.  

c1:  Human machine interface for Lab ABC computer applications 

c2:  A survey of user opinion of computer system response time

c3:  The EPS user interface management system

c4:  System and human system engineering testing of EPS

c5:  Relation of user-perceived response time to error measurement 

m1:  The generation of random, binary, unordered trees

m2:  The intersection graph of paths in trees

m3:  Graph minors IV: Widths of trees and well-quasi-ordering 

m4:  Graph minors: A survey

The term-document matrix A is given below, which is a 9 12 matrix.

c1 c2 c3 c4 c5 m1 m2 m3 m4

1  0  0  1  0  0  0  0  0  human
1  0  1  0  0  0  0  0  0  interface
1  1  0  0  0  0  0  0  0  computer
0  1  1  0  1  0  0  0  0  user
0  1  1  2  0  0  0  0  0  system

A = 0  1  0  0  1  0  0  0  0  response
0  1  0  0  1  0  0  0  0  time
0  0  1  1  0  0  0  0  0  EPS
0  1  0  0  0  0  0  0  1  survey
0  0  0  0  0  1  1  1  0  trees
0  0  0  0  0  0  1  1  1  graph
0  0  0  0  0  0  0  1  1 minors



220      6 Information Retrieval and Web Search

After performing SVD, we obtain three matrices, U, and VT, which are 

given below. Singular values on the diagonal of are in decreasing order.  

  0.22  -0.11  0.29  -0.41  -0.11  -0.34  0.52  -0.06  -0.41 
  0.20  -0.07  0.14  -0.55  0.28  0.50  -0.07  -0.01  -0.11 
  0.24  0.04  -0.16  -0.59  -0.11  -0.25  -0.30  0.06  0.49 
  0.40  0.06  -0.34  0.10  0.33  0.38  0.00  0.00  0.01 
  0.64  -0.17  0.36  0.33  -0.16  -0.21  -0.17  0.03  0.27 

U = 0.27  0.11  -0.43  0.07  0.08  -0.17  0.28  -0.02  -0.05 
  0.27  0.11  -0.43  0.07  0.08  -0.17  0.28  -0.02  -0.05 
  0.30  -0.14  0.33  0.19  0.11  0.27  0.03  -0.02  -0.17 
  0.21  0.27  -0.18  -0.03  -0.54  0.08  -0.47  -0.04  -0.58 
  0.01  0.49  0.23  0.03  0.59  -0.39  -0.29  0.25  -0.23 
  0.04  0.62  0.22  0.00  -0.07  0.11  0.16  -0.68  0.23 
  0.03  0.45  0.14  -0.01  -0.30  0.28  0.34  0.68  0.18 

 3.34  0 0 0 0 0 0 0 0 
 0 2.54 0 0 0 0 0 0 0 

 0 0 2.35 0 0 0 0 0 0 
 0 0 0 1.64 0 0 0 0 0 
 = 0 0 0 0 1.50 0 0 0 0 

 0 0 0 0 0 1.31 0 0 0 
 0 0 0 0 0 0 0.85 0 0 

 0 0 0 0 0 0 0 0.56 0 
 0 0 0 0 0 0 0 0 0.36 

  0.20   -0.06  0.11  -0.95  0.05  -0.08  0.18  -0.01  -0.06 
  0.61   0.17  -0.50  -0.03  -0.21  -0.26  -0.43  0.05  0.24 
  0.46  -0.13  0.21  0.04  0.38  0.72  -0.24  0.01  0.02 
  0.54  -0.23  0.57  0.27  -0.21  -0.37  0.26  -0.02  -0.08 

V
T = 0.28  0.11  -0.51  0.15  0.33  0.03  0.67  -0.06  -0.26 

  0.00  0.19  0.10  0.02  0.39  -0.30  -0.34  0.45  -0.62 
  0.01  0.44  0.19  0.02  0.35  -0.21  -0.15  -0.76  0.02 
  0.02  0.62  0.25  0.01  0.15  0.00  0.25  0.45  0.52 
  0.08  0.53  0.08  -0.03  -0.60  0.36  0.04  -0.07  -0.45 

Now let us choose only two largest singular values from , i.e., k = 2.  

Thus, the concept space has only two dimensions. The other two matrices 

are also truncated accordingly. We obtain the 3 matrix Uk, k and Vk
T:

 Uk k      Vk
 T

 0.22  -0.11  3.34  0 0.20  0.61  0.46  0.54  0.28  0.00  0.02  0.02  0.08 
 0.20  -0.07  0 2.54  -0.06  0.17  -0.13  -0.23  0.11  0.19  0.44  0.62  0.53 
 0.24  0.04 
 0.40  0.06 
 0.64  -0.17 
Ak = 0.27  0.11 
 0.27  0.11 
 0.30  -0.14 
 0.21  0.27 
 0.01  0.49 
 0.04  0.62 
 0.03  0.45 



6.7 Latent Semantic Indexing      221 

Now we issue a search query q, “user interface”, to find relevant docu-

ments. The transformed query document qk of query q in the k-concept 

space is computed below using Equation (26), which is (0.179  -0.004).

  0 T  0.22  -0.11    

 1  0.20  -0.07    

  0 0.24  0.04 

  1 0.40  0.06 

  0 0.64 -0.17

 0 0.27  0.11 3.34  0   -1

  0 0.27  0.11  0 2.54 

  0 0.30 -0.14

  0 0.21  0.27 

  0 0.01  0.49 

  0 0.04  0.62 

  0 0.03  0.45 

qk is then compared with every document vector in Vk using the cosine 

similarity. The similarity values are as follows:  

c1: 0.964 

c2: 0.957 

c3: 0.968 

c4: 0.928 

c5: 0.922 

m1: 0.022

m2: 0.023 

m3: 0.010 

m4: 0.127 

We obtain the final ranking of (c3, c1, c2, c4, c5, m4, m2, m3, m1).

6.7.4 Discussion 

LSI has been shown to perform better than traditional keywords based 

methods. The main drawback is the time complexity of the SVD, which is 

O(m2n). It is thus difficult to use for a large document collection such as 

the Web. Another drawback is that the concept space is not interpretable as 

its description consists of all numbers with little semantic meaning.  

Determining the optimal number of dimensions k of the concept space is 

also a major difficulty. There is no general consensus for an optimal num-

ber of dimensions. The original paper [125] of LSI suggests 50–350 di-

mensions. In practice, the value of k needs to be determined based on the 

specific document collection via trial and error, which is a very time con-

suming process due to the high time complexity of the SVD.  

To close this section, one can imagine that association rules may be able 

to approximate the results of LSI and avoid its shortcomings. Association 

= (0.179 0.004)qk =



222      6 Information Retrieval and Web Search

rules represent term correlations or co-occurrences. Association rule min-

ing has two advantages. First, its mining algorithm is very efficient. Since 

we may only need rules with 2-3 terms, which are sufficient for practical 

purposes, the mining algorithm only needs to scan the document collection 

2-3 times. Second, rules are easy to understand. However, little research 

has been done in this direction so far.  

6.8 Web Search 

We now put it all together and describe the working of a search engine. 

Since it is difficult to know the internal details of a commercial search en-

gine, most contents in this section are based on research papers, especially 

the early Google paper [68]. Due to the efficiency problem, latent semantic 

indexing is probably not used in Web search yet. Current search algorithms 

are still mainly based on the vector space model and term matching. 

A search engine starts with the crawling of pages on the Web. The 

crawled pages are then parsed, indexed, and stored. At the query time, the 

index is used for efficient retrieval. We will not discuss crawling here. Its 

details can be found in Chap. 8. The subsequent operations of a search en-

gine are described below:

Parsing: A parser is used to parse the input HTML page, which produces a 

stream of tokens or terms to be indexed. The parser can be constructed us-

ing a lexical analyzer generator such as YACC and Flex (which is from the 

GNU project). Some pre-processing tasks described in Sect. 6.5 may also 

be performed before or after parsing.

Indexing: This step produces an inverted index, which can be done using 

any of the methods described in Sect. 6.6. For retrieval efficiency, a search 

engine may build multiple inverted indices. For example, since the titles 

and anchor texts are often very accurate descriptions of the pages, a small 

inverted index may be constructed based on the terms appeared in them 

alone. Note that here the anchor text is for indexing the page that its link 

points to, not the page containing it. A full index is then built based on all 

the text in each page, including anchor texts (a piece of anchor text is in-

dexed both for the page that contains it, and for the page that its link points 

to). In searching, the algorithm may search in the small index first and then 

the full index. If a sufficient number of relevant pages are found in the 

small index, the system may not search in the full index.  

Searching and Ranking: Given a user query, searching involves the fol-

lowing steps: 



6.8 Web Search      223 

1. pre-processing the query terms using some of the methods described in 

Sect. 6.5, e.g., stopword removal and stemming; 

2. finding pages that contain all (or most of) the query terms in the inverted 

index;

3. ranking the pages and returning them to the user.  

The ranking algorithm is the heart of a search engine. However, little is 

known about the algorithms used in commercial search engines. We give a 

general description based on the algorithm in the early Google system.  

As we discussed earlier, traditional IR uses cosine similarity values or 

any other related measures to rank documents. These measures only con-

sider the content of each document. For the Web, such content based 

methods are not sufficient. The problem is that on the Web there are too 

many relevant documents for almost any query. For example, using “web 

mining” as the query, the search engine Google estimated that there were 

46,500,000 relevant pages. Clearly, there is no way that any user will look 

at this huge number of pages. Therefore, the issue is how to rank the pages 

and present the user the “best” pages at the top.  

An important ranking factor on the Web is the quality of the pages, 

which was hardly studied in traditional IR because most documents used in 

IR evaluations are from reliable sources. However, on the Web, anyone 

can publish almost anything, so there is no quality control. Although a 

page may be 100% relevant, it may not be a quality page due to several 

reasons. For example, the author may not be an expert of the query topic, 

the information given in the page may be unreliable or biased, etc.  

However, the Web does have an important mechanism, the hyperlinks 

(links), that can be used to assess the quality of each page to some extent. 

A link from page x to page y is an implicit conveyance of authority of page 

x to page y. That is, the author of page x believes that page y contains qual-

ity or authoritative information. One can also regard the fact that page x

points to page y as a vote of page x for page y. This democratic nature of 

the Web can be exploited to assess the quality of each page. In general, the 

more votes a page receives, the more likely it is a quality page. The actual 

algorithms are more involved than simply counting the number of votes or 

links pointing to a page (called in-links). We will describe the algorithms 

in the next chapter. PageRank is the most well known such algorithm (see 

Sect. 7.3). It makes use of the link structure of Web pages to compute a 

quality or reputation score for each page. Thus, a Web page can be evalu-

ated based on both its content factors and its reputation. Content-based 

evaluation depends on two kinds of information:   

Occurrence Type: There are several types of occurrences of query terms 

in a page:



224      6 Information Retrieval and Web Search

Title: a query term occurs in the title field of the page.  

Anchor text: a query term occurs in the anchor text of a page pointing 

to the current page being evaluated.  

URL: a query term occurs in the URL of the page. Many URL ad-

dresses contain some descriptions of the page. For example, a page 

on Web mining may have the URL http://www.domain.edu/Web-

mining.html.  

Body: a query term occurs in the body field of the page. In this case, the 

prominence of each term is considered. Prominence means whether 

the term is emphasized in the text with a large font, or bold and/or 

italic tags. Different prominence levels can be used in a system. Note 

that anchor texts in the page can be treated as plain texts for the 

evaluation of the page.  

Count: The number of occurrences of a term of each type. For example, a 

query term may appear in the title field of the page 2 times. Then, the ti-

tle count for the term is 2.  

Position: This is the position of each term in each type of occurrence. The 

information is used in proximity evaluation involving multiple query 

terms. Query terms that are near to each other are better than those that 

are far apart. Furthermore, query teams appearing in the page in the 

same sequence as they are in the query are also better.  

For the computation of the content based score (also called the IR score),

each occurrence type is given an associated weight. All type weights form 

a fixed vector. Each raw term count is converted to a count weight, and all 

count weights also form a vector.  

The quality or reputation of a page is usually computed based on the 

link structure of Web pages, which we will study in Chap. 7. Here, we as-

sume that a reputation score has been computed for each page.  

Let us now look at two kinds of queries, single word queries and 

multi-word queries. A single word query is the simplest case with only a 

single term. After obtaining the pages containing the term from the in-

verted index, we compute the dot product of the type weight vector and 

the count weight vector of each page, which gives us the IR score of the 

page. The IR score of each page is then combined with its reputation

score to produce the final score of the page.   

For a multi-word query, the situation is similar, but more complex since 

there is now the issue of considering term proximity and ordering. Let us 

simplify the problem by ignoring the term ordering in the page. Clearly, 

terms that occur close to each other in a page should be weighted higher 

than those that occur far apart. Thus multiple occurrences of terms need to 

be matched so that nearby terms are identified. For every matched set, a 



6.9 Meta-Search and Combining Multiple Rankings      225 

proximity value is calculated, which is based on how far apart the terms 

are in the page. Counts are also computed for every type and proximity. 

Each type and proximity pair has a type-proximity-weight. The counts are 

converted into count-weights. The dot product of the count-weights and 

the type-proximity-weights gives an IR score to the page. Term ordering 

can be considered similarly and included in the IR score, which is then 

combined with the page reputation score to produce the final rank score.  

6.9 Meta-Search and Combining Multiple Rankings 

In the last section, we described how an individual search engine works. 

We now discuss how several search engines can be used together to pro-

duce a meta-search engine, which is a search system that does not have its 

own database of Web pages. Instead, it answers the user query by combin-

ing the results of some other search engines which normally have their da-

tabases of Web pages. Figure 6.12 shows a meta-search architecture. 

After receiving a query from the user through the search interface, the 

meta-search engine submits the query to the underlying search engines 

(called its component search engines). The returned results from all these 

search engines are then combined (fused or merged) and sent to the user.   

A meta-search engine has some intuitive appeals. First of all, it increases 

the search coverage of the Web. The Web is a huge information source, 

and each individual search engine may only cover a small portion of it. If 

we use only one search engine, we will never see those relevant pages that 

are not covered by the search engine. 

Fig. 6.12. A meta-search architecture 

Meta-search may also improve the search effectiveness. Each compo-

nent search engine has its ranking algorithm to rank relevant pages, which 

is often biased, i.e., it works well for certain types of pages or queries but 

Search interface

Metasearch

engine 

Search 

engine 1 

Search 

engine 2 

Search 

engine n



226      6 Information Retrieval and Web Search

not for others. By combining the results from multiple search engines, their 

biases can be reduced and thus the search precision can be improved.  

The key operation in meta-search is to combine the ranked results from 

the component search engines to produce a single ranking. The first task is 

to identify whether two pages from different search engines are the same, 

which facilitates combination and duplicate removal. Without download-

ing the full pages (which is too time consuming), this process is not simple 

due to aliases, symbolic links, redirections, etc. Typically, several heuris-

tics are used for the purpose, e.g., comparing domain names of URLs, ti-

tles of the pages, etc.

The second task is to combine the ranked results from individual search 

engines to produce a single ranking, i.e., to fuse individual rankings. There 

are two main classes of meta-search combination (or fusion) algorithms: 

ones that use similarity scores returned by each component system and 

ones that do not. Some search engines return a similarity score (with the 

query) for each returned page, which can be used to produce a better com-

bined ranking. We discuss these two classes of algorithms below.  

It is worth noting that the first class of algorithms can also be used to 

combine scores from different similarity functions in a single IR system or 

in a single search engine. Indeed, the algorithms below were originally 

proposed for this purpose. It is likely that search engines already use some 

such techniques (or their variations) within their ranking mechanisms be-

cause a ranking algorithm needs to consider multiple factors. 

6.9.1 Combination Using Similarity Scores 

Let the set of candidate documents to be ranked be D = {d1, d2, …, dN}.

There are k underlying systems (component search engines or ranking 

techniques). The ranking from system or technique i gives document dj the 

similarity score, sij. Some popular and simple combination methods are de-

fined by Fox and Shaw in [184].  

CombMIN: The combined similarity score for each document dj is the 

minimum of the similarities from all underlying search engine systems: 

CombMIN(dj) = min(s1j, s2j, …, skj). (33) 

CombMAX: The combined similarity score for each document dj is the 

maximum of the similarities from all underlying search engine systems: 

CombMAX(dj) = max(s1j, s2j, …, skj). (34) 

CombSUM: The combined similarity score for each document dj is the 

sum of the similarities from all underlying search engine systems. 



6.9 Meta-Search and Combining Multiple Rankings      227 

.)(CombSUM
1

k

i ijj sd (35)

CombANZ: It is defined as  

,
)(CombSUM

)(CombANZ
j

j

j
r

d
d

(36)

where rj is the number of non-zero similarities, or the number of sys-

tems that retrieved dj.

CombMNZ: It is defined as 

jjj rdd )(CombSUM)(CombMNZ (37)

where rj is the number of non-zero similarities, or the number of sys-

tems that retrieved dj.

It is a common practice to normalize the similarity scores from each 

ranking using the maximum score before combination. Researchers have 

shown that, in general, CombSUM and CombMNZ perform better. 

CombMNZ outperforms CombSUM slightly in most cases.  

6.9.2 Combination Using Rank Positions 

We now discuss some popular rank combination methods that use only 

rank positions of each search engine. In fact, there is a field of study called 

the social choice theory [273] that studies voting algorithms as techniques 

to make group or social decisions (choices). The algorithms discussed be-

low are based on voting in elections.  

In 1770 Jean-Charles de Borda proposed “election by order of merit”.  

Each voter announces a (linear) preference order on the candidates. For 

each voter, the top candidate receives n points (if there are n candidates in 

the election), the second candidate receives n 1 points, and so on. The 

points from all voters are summed up to give the final points for each can-

didate. If there are candidates left unranked by a voter, the remaining 

points are divided evenly among the unranked candidates. The candidate 

with the most points wins. This method is called the Borda ranking.

An alternative method was proposed by Marquis de Condorcet in 1785. 

The Condorcet ranking algorithm is a majoritarian method where the 

winner of the election is the candidate(s) that beats each of the other can-

didates in a pair-wise comparison. If a candidate is not ranked by a voter, 

the candidate loses to all other ranked candidates. All unranked candidates 

tie with one another.



228      6 Information Retrieval and Web Search

Yet another simple method, called the reciprocal ranking, sums one 

over the rank of each candidate across all voters. For each voter, the top 

candidate has the score of 1, the second ranked candidate has the score of 

1/2, and the third ranked candidate has the score of 1/3 and so on. If a can-

didate is not ranked by a voter, it is skipped in the computation for this 

voter. The candidates are then ranked according to their final total scores. 

This rank strategy gives much higher weight than Borda ranking to candi-

dates that are near the top of a list. 

Example 13: We use an example in the context of meta-search to illustrate 

the working of these methods. Consider a meta-search system with five 

underlying search engine systems, which have ranked four candidate 

documents or pages, a, b, c, and d as follows:  

system 1:  a, b, c, d
system 2: b, a, d, c

system 3: c, b, a, d
system 4: c, b, d

system 5: c, b

Let us denote the score of each candidate x by Score(x).

Borda Ranking: The score for each page is as follows:  

Score(a) = 4 + 3 + 2 + 1 + 1.5 = 11.5 

Score(b) = 3 + 4 + 3 + 3 + 3 = 16 

Score(c) = 2 + 1 + 4 + 4 + 4 = 15 

Score(d) = 1 + 2 + 1 + 2 + 1.5 = 7.5 

Thus the final ranking is: b, c, a, d.

Condorcet Ranking: We first build an n n matrix for all pair-wise com-

parisons, where n is the number of pages. Each non-diagonal entry (i, j) of 

the matrix shows the number of wins, loses, and ties of page i over page j,

respectively. For our example, the matrix is as follows:  

a b c d 

a - 1:4:0 2:3:0 3:1:1 

b 4:1:0 - 2:3:0 5:0:0 

c 3:2:0 3:2:0 - 4:1:0 

d 1:3:1 0:5:0 1:4:0 - 

Fig. 6.13. The pair-wise comparison matrix for the four candidate pages 

After the matrix is constructed, pair-wise winners are determined, which 

produces a win, lose and tie table. Each pair in Fig. 6.13 is compared, and 

the winner receives one point in its “win” column and the loser receives 



6.10 Web Spamming      229 

one point in its “lose” column. For a pair-wise tie, both receive one point 

in the “tie” column. For example, for page a, it only beats d because a is 

ranked ahead of d three times out of 5 ranks (Fig. 6.13). The win, lose and 

tie table for Fig. 6.13 is given in Fig. 6.14 below. 

win lose tie 

a 1 2 0 

b 2 1 0 

c 3 0 0 

d 0 3 0 

Fig. 6.14. The win, lose and tie table for the comparison matrix in Fig. 6.13 

To rank the pages, we use their win and lose values. If the number of 

wins that a page i has is higher than another page j, then i wins over j. If 

their win property is equal, we consider their lose scores, and the page 

which has a lower lose score wins. If both their win and lose scores are the 

same, then the pages are tied. The final ranks of the tied pages are ran-

domly assigned. Clearly c is the Condorcet winner in our example. The fi-

nal ranking is: c, b, a, d.

Using Reciprocal Ranking: 

Score(a) = 1 + 1/2 + 1/3 = 1.83 

Score(b) = 1/2 + 1 + 1/2 + 1/2 + 1/2 = 3 

Score(c) = 1/3 + 1/4 + 1 + 1 + 1 = 3.55 

Score(d) = 1/4 + 1/3 + 1/4 + 1/3= 1.17 

The final ranking is: c, b, a, d.

6.10 Web Spamming 

Web search has become very important in the information age. Increased 

exposure of pages on the Web can result in significant financial gains 

and/or fames for organizations and individuals. The rank positions of Web 

pages in search are perhaps the single most important indicator of such ex-

posures of pages. If a user searches for information that is relevant to your 

pages but your pages are ranked low by search engines, then the user may 

not see the pages because one seldom clicks a large number of returned 

pages. This is not acceptable for businesses, organizations, and even indi-

viduals. Thus, it has become very important to understand search engine 

ranking algorithms and to present the information in one’s pages in such a 

way that the pages will be ranked high when terms related to the contents 



230      6 Information Retrieval and Web Search

of the pages are searched. Unfortunately, this also results in spamming,

which refers to human activities that deliberately mislead search engines to 

rank some pages higher than they deserve.  

There is a gray area between spamming and legitimate page optimiza-

tion. It is difficult to define precisely what are justifiable and unjustifiable 

actions aimed at boosting the importance and consequently the rank posi-

tions of one’s pages. 

Assume that, given a user query, each page on the Web can be assigned 

an information value. All the pages are then ranked according to their in-

formation values. Spamming refers to actions that do not increase the in-

formation value of a page, but dramatically increase its rank position by 

misleading search algorithms to rank it high. Due to the fact that search 

engine algorithms do not understand the content of each page, they use 

syntactic or surface features to assess the information value of the page. 

Spammers exploit this weakness to boost the ranks of their pages.  

Spamming is annoying for users because it makes it harder to find truly 

useful information and leads to frustrating search experiences. Spamming 

is also bad for search engines because spam pages consume crawling 

bandwidth, pollute the Web, and distort search ranking. 

There are in fact many companies that are in the business of helping 

others improve their page ranking. These companies are called Search

Engine Optimization (SEO) companies, and their businesses are thriving. 

Some SEO activities are ethical and some, which generate spam, are not. 

As we mentioned earlier, search algorithms consider both content based 

factors and reputation based factors in scoring each page. In this section, 

we briefly describe some spam methods that exploit these factors. The sec-

tion is mainly based on [214] by Gyongyi and Garcia-Molina.  

6.10.1  Content Spamming  

Most search engines use variations of TF-IDF based measures to assess the 

relevance of a page to a user query. Content-based spamming methods ba-

sically tailor the contents of the text fields in HTML pages to make spam 

pages more relevant to some queries. Since TF-IDF is computed based on 

terms, content spamming is also called term spamming. Term spamming 

can be placed in any text field:  

Title: Since search engines usually give higher weights to terms in the 

title of a page due to the importance of the title to a page, it is thus com-

mon to spam the title.  

Meta-Tags: The HTML meta-tags in the page header enable the owner 

to include some meta information of the page, e.g., author, abstract, key-



6.10 Web Spamming      231 

words, content language, etc. However, meta-tags are very heavily 

spammed. Search engines now give terms within these tags very low 

weights or completely ignore their contents.   

Body: Clearly spam terms can be placed within the page body to boost 

the page ranking.    

Anchor Text: As we discussed in Sect. 6.8, the anchor text of a hyper-

link is considered very important by search engines. It is indexed for the 

page containing it and also for the page that it points to, so anchor text 

spam affects the ranking of both pages.   

URL: Some search engines break down the URL of a page into terms 

and consider them in ranking. Thus, spammers can include spam terms in 

the URL. For example, a URL may be http://www.xxx.com/cheap-MP3-

player-case-battery.html 

There are two main term spam techniques, which simply create syn-

thetic contents containing spam terms.  

1. Repeating some important terms: This method increases the TF 

scores of the repeated terms in a document and thus increases the rele-

vance of the document to these terms. Since plain repetition can be eas-

ily detected by search engines, the spam terms can be weaven into some 

sentences, which may be copied from some other sources. That is, the 

spam terms are randomly placed in these sentences. For example, if a 

spammer wants to repeat the word “mining”, it may add it randomly in 

an unrelated (or related) sentence, e.g., “the picture mining quality of 

this camera mining is amazing,” instead of repeating it many times con-

secutively (next to each other), which is easy to detect. 

2. Dumping of many unrelated terms: This method is used to make the 

page relevant to a large number of queries. In order to create the spam 

content quickly, the spammer may simply copy sentences from related 

pages on the Web and glue them together.  

Advertisers may also take advantage of some frequently searched 

terms on the Web and put them in the target pages so that when users 

search for the frequently search terms, the target pages become relevant. 

For example, to advertise cruise liners or cruise holiday packages, 

spammers put “Tom Cruise” in their advertising pages as “Tom Cruise”

is a popular film actor in USA and is searched very frequently.  

6.10.2  Link Spamming  

Since hyperlinks play an important role in determining the reputation score 

of a page, spammers also spam on hyperlinks.  



232      6 Information Retrieval and Web Search

Out-Link Spamming: It is quite easy to add out-links in one’s pages 

pointing to some authoritative pages to boost the hub cores of one’s 

pages. A page is a hub page if it points to many authoritative (or quality) 

pages. The concepts of authority and hub will be formally studied in the 

next chapter (Sect. 7.4). To create massive out-links, spammers may use a 

technique called directory cloning. There are many directories, e.g., Ya-

hoo!, DMOZ Open Directory, on the Web which contain a large number of 

links to other Web pages that are organized according to some pre-

specified topic hierarchies. Spammers simply replicate a large portion of a 

directory in the spam page to create a massive out-link structure quickly.  

In-Link Spamming: In-link spamming is harder to achieve because it is 

not easy to add hyperlinks on the Web pages of others. Spammers typically 

use one or more of the following techniques.  

1. Creating a honey pot: If a page wants to have a high reputation/quality 

score, it needs quality pages pointing to it (see Sect. 7.3 in the next 

chapter). This method basically tries to create some important pages that 

contain links to target spam pages. For example, the spammer can create 

a set of pages that contains some very useful information, e.g., glossary 

of Web mining terms, or Java FAQ and help pages. The honey pots at-

tract people pointing to them because they contain useful information, 

and consequently have high reputation scores (high quality pages). Such 

honey pots contain (hidden) links to target spam pages that the spam-

mers want to promote. This strategy can significantly boost the spam 

pages.

2. Adding links to Web directories: Many Web directories allow the user to 

submit URLs. Spammers can submit the URLs of spam pages at multi-

ple directory sites. Since directory pages often have high quality (or au-

thority) and hub scores, they can boost reputation scores of spam pages 

significantly.  

3. Posting links to the user-generated content (reviews, forum discussions, 

blogs, etc): There are numerous sites on the Web that allow the user to 

freely post messages, which are called the user-generated content.

Spammers can add links pointing to their pages to the seemly innocent 

messages that they post.   

4. Participating in link exchange: In this case, many spammers form a 

group and set up a link exchange scheme so that their sites point to each 

other in order to promote the pages of all the sites.  

5. Creating own spam farm: In this case, the spammer needs to control a 

large number of sites. Then, any link structure can be created to boost 

the ranking of target spam pages. 



6.10 Web Spamming      233 

6.10.3  Hiding Techniques  

In most situations, spammer wants to conceal or to hide the spamming sen-

tences, terms and links so that the Web users do not see them. They can 

use a number of techniques. 

Content Hiding: Spam items are made invisible. One simple method is to 

make the spam terms the same color as the background color. For example, 

one may use the following for hiding, 

<body background = white> 
 <font color = white> spam items</font> 
 … 
 </body> 

To hide a hyperlink, one can also use a very small image and a blank 

image. For example, one may use  

<a href = target.html”><img src=”blank.gif”> </a> 

A spammer can also use scripts to hide some of the visual elements on 

the page, for instance, by setting the visible HTML style attribute to false.

Cloaking: Spam Web servers return a HTML document to the user and a 

different document to a Web crawler. In this way, the spammer can present 

the Web user with the intended content and send a spam page to the search 

engine for indexing.  

Spam Web servers can identify Web crawlers in one of the two ways: 

1. It maintains a list of IP addresses of search engines and identifies search 

engine crawlers by matching IP addresses.  

2. It identifies Web browsers based on the user–agent field in the HTTP 

request message. For instance, the user–agent name of the following 

HTTP request message is the one used by the Microsoft Internet Ex-

plorer 6 browser: 

GET /pub/WWW/TheProject.html HTTP/1.1 
Host: www.w3.org 

User–Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)  

User–agent names are not standard, so it is up to the requesting application 

what to include in the corresponding message field. However, search en-

gine crawlers usually identify themselves by names distinct from normal 

Web browsers in order to allow well-intended, and legitimate optimization. 

For example, some sites serve search engines a version of their pages that 

is free of navigation links and advertisements.



234      6 Information Retrieval and Web Search

Redirection: Spammers can also hide a spammed page by automatically 

redirecting the browser to another URL as soon as the page is loaded. 

Thus, the spammed page is given to the search engine for indexing (which 

the user will never see), and the target page is presented to the Web user 

through redirection. One way to achieve redirection is to use the “refresh” 

meta-tag, and set the refresh time to zero. Another way is to use scripts.  

6.10.4 Combating Spam 

Some spamming activities, like redirection using refresh meta-tag, are easy 

to detect. However, redirections by using scripts are hard to identify be-

cause search engine crawlers do not execute scripts. To prevent cloaking, a 

search engine crawler may identify itself as a regular Web browser.  

Using the terms of anchor texts of links that point to a page to index the 

page is able to fight content spam to some extent because anchor texts 

from other pages are more trustworthy. This method was originally pro-

posed to index pages that were not fetched by search engine crawlers 

[364]. It is now a general technique used by search engines as we have 

seen in Sect. 6.8, i.e., search engines give terms in such anchor texts higher 

weights. In fact, the terms near a piece of anchor text also offer good edito-

rial judgment about the target page.  

The PageRank algorithm [68] is able to combat content spam to a cer-

tain degree as it is based on links that point to the target pages, and the 

pages that point to the target pages need to be reputable or with high Pag-

eRank scores as well (see Chap. 7). However, it does not deal with the in-

link based spamming methods discussed above.

Instead of combating each individual type of spam, a method (called 

TrustRank) is proposed in [216] to combat all kinds of spamming methods 

at the same time. It takes advantage of the approximate isolation of reputa-

ble and non-spam pages, i.e., reputable Web pages seldom pointing to 

spam pages, and spam pages often link to many reputable pages (in an at-

tempt to improve their hub scores). Link analysis methods are used to 

separate reputable pages and any form of spam without dealing with each 

spam technique individually. 

Combating spam can also be seen as a classification problem, i.e., pre-

dicting whether a page is a spam page or not. One can use any supervised 

learning algorithm to train a spam classifier. The key issue is to design fea-

tures used in learning. The following are some example features used in 

[417] to detect content spam. 

1. Number of words in the page: A spam page tends to contain more words 

than a non-spam page so as to cover a large number of popular words.  



Bibliographic Notes      235 

2. Average word length: The mean word length for English prose is about 

5 letters. Average word length of synthetic content is often different.  

3. Number of words in the page title: Since search engines usually give ex-

tra weights to terms appearing in page titles, spammers often put many 

keywords in the titles of the spam pages. 

4. Fraction of visible content: Spam pages often hide spam terms by mak-

ing them invisible to the user.  

Other features used include the amount of anchor text, compressibility, 

fraction of page drawn from globally popular words, independent n-gram

likelihoods, conditional n-gram likelihoods, etc. Details can be found in 

[417]. Its spam detection classifier gave very good results. Testing on 2364 

spam pages and 14806 non-spam pages (17170 pages in total), the classi-

fier was able to correctly identify 2,037 (86.2%) of the 2364 spam pages, 

while misidentifying only 526 spam and non-spam pages. 

Another interesting technique for fighting spam is to partition each Web 

page into different blocks using techniques discussed in Sect. 6.5. Each 

block is given an importance level automatically. To combat link spam, 

links in less important blocks are given lower transition probabilities to be 

used in the PageRank computation. The original PageRank algorithm as-

signs every link in a page an equal transition probability (see Sect. 7.3). 

The non-uniform probability assignment results in lower PageRank scores 

for pages pointed to by links in less important blocks. This method is ef-

fective because in the link exchange scheme and the honey pot scheme, the 

spam links are usually placed in unimportant blocks of the page, e.g., at the 

bottom of the page. The technique may also be used to fight term spam in a 

similar way, i.e., giving terms in less important blocks much lower weights 

in rank score computation. This method is proposed in [78]. 

However, sophisticated spam is still hard to detect. Combating spam is 

an on-going process. Once search engines are able to detect certain types 

of spam, spammers invent more sophisticated spamming methods. 

Bibliographic Notes 

Information retrieval (IR) is a major research field. This chapter only gives 

a brief introduction to some commonly used models and techniques. There 

are several text books that have a comprehensive coverage of the field, 

e.g., those by Baeza-Yates and Ribeiro-Neto [31], Grossman and Frieder 

[209], Salton and McGill [471], van Rijsbergen (an online book at 

http://www.dcs.gla.ac.uk/Keith/Preface.html), Witten et al. [551], and Yu

and Meng [581].  



Web Mining 

 

 

 

 

 

 

UNIT - IV 
Link Analysis and Web Crawling



7 Link Analysis 

Early search engines retrieved relevant pages for the user based primarily 

on the content similarity of the user query and the indexed pages of the 

search engines. The retrieval and ranking algorithms were simply direct 

implementation of those from information retrieval. Starting from 1996, it 

became clear that content similarity alone was no longer sufficient for 

search due to two reasons. First, the number of Web pages grew rapidly 

during the middle to late 1990s. Given any query, the number of relevant 

pages can be huge. For example, given the search query “classification 

technique”, the Google search engine estimates that there are about 10 mil-

lion relevant pages. This abundance of information causes a major problem 

for ranking, i.e., how to choose only 30–40 pages and rank them suitably 

to present to the user. Second, content similarity methods are easily 

spammed. A page owner can repeat some important words and add many 

remotely related words in his/her pages to boost the rankings of the pages 

and/or to make the pages relevant to a large number of possible queries.  

Starting from around 1996, researchers in academia and search engine 

companies began to work on the problem. They resort to hyperlinks. 

Unlike text documents used in traditional information retrieval, which are 

often considered independent of one another (i.e., with no explicit relation-

ships or links among them except in citation analysis), Web pages are con-

nected through hyperlinks, which carry important information. Some hy-

perlinks are used to organize a large amount of information at the same 

Web site, and thus only point to pages in the same site. Other hyperlinks 

point to pages in other Web sites. Such out-going hyperlinks often indicate 

an implicit conveyance of authority to the pages being pointed to. There-

fore, those pages that are pointed to by many other pages are likely to con-

tain authoritative or quality information. Such linkages should obviously be 

used in page evaluation and ranking in search engines. 

During the period of 1997-1998, two most influential hyperlink based 

search algorithms PageRank [68, 422] and HITS [281] were designed.  

PageRank is the algorithm that powers the successful search engine Google. 

Both PageRank and HITS were originated from social network analysis 

[540]. They both exploit the hyperlink structure of the Web to rank pages 

according to their levels of “prestige” or “authority”. We will study these 



238      7 Link Analysis

algorithms in this chapter. We should also note that hyperlink-based page 

evaluation and ranking is not the only method used by search engines. As 

we discussed in Chap. 6, contents and many other factors are also consid-

ered in producing the final ranking presented to the user.  

Apart from search ranking, hyperlinks are also useful for finding Web 

communities. A Web community is a cluster of densely linked pages rep-

resenting a group of people with a common interest. Beyond explicit hy-

perlinks on the Web, links in other contexts are useful too, e.g., for discov-

ering communities of named entities (e.g., people and organizations) in 

free text documents, and for analyzing social phenomena in emails. This 

chapter will introduce some of the current algorithms.   

7.1 Social Network Analysis 

Social network is the study of social entities (people in an organization, 

called actors), and their interactions and relationships. The interactions 

and relationships can be represented with a network or graph, where each 

vertex (or node) represents an actor and each link represents a relationship. 

From the network we can study the properties of its structure, and the role, 

position and prestige of each social actor. We can also find various kinds 

of sub-graphs, e.g., communities formed by groups of actors.  

Social network analysis is useful for the Web because the Web is essen-

tially a virtual society, and thus a virtual social network, where each page 

can be regarded as a social actor and each hyperlink as a relationship. 

Many of the results from social networks can be adapted and extended for 

use in the Web context. The ideas from social network analysis are indeed 

instrumental to the success of Web search engines.   

In this section, we introduce two types of social network analysis, cen-

trality and prestige, which are closely related to hyperlink analysis and 

search on the Web. Both centrality and prestige are measures of degree of 

prominence of an actor in a social network. We introduce them below. For 

a more complete treatment of the topics, please refer to the authoritative 

text by Wasserman and Faust [540]. 

7.1.1  Centrality 

Important or prominent actors are those that are linked or involved with 

other actors extensively. In the context of an organization, a person with 

extensive contacts (links) or communications with many other people in 

the organization is considered more important than a person with relatively 



7.1 Social Network Analysis      239 

fewer contacts. The links can also be called ties. A central actor is one in-

volved in many ties. Fig. 7.1 shows a simple example using an undirected 

graph. Each node in the social network is an actor and each link indicates 

that the actors on the two ends of the link communicate with each other. 

Intuitively, we see that the actor i is the most central actor because he/she 

can communicate with most other actors.  

Fig. 7.1. An example of a social network 

There are different types of links or involvements between actors. Thus, 

several types of centrality are defined on undirected and directed graphs. 

We discuss three popular types below.  

Degree Centrality  

Central actors are the most active actors that have most links or ties with 

other actors. Let the total number of actors in the network be n.

Undirected Graph: In an undirected graph, the degree centrality of an 

actor i (denoted by CD(i)) is simply the node degree (the number of edges) 

of the actor node, denoted by d(i), normalized with the maximum degree, 

n 1.

.
1

)(
)(

n

id
iCD

(1)

The value of this measure ranges between 0 and 1 as n 1 is the maximum 

value of d(i).

Directed Graph: In this case, we need to distinguish in-links of actor i

(links pointing to i), and out-links (links pointing out from i). The degree 

centrality is defined based on only the out-degree (the number of out-links 

or edges), do(i).

.
1

)(
)('

n

id
iC o

D
(2)

i



240      7 Link Analysis

Closeness Centrality 

This view of centrality is based on the closeness or distance. The basic idea 

is that an actor xi is central if it can easily interact with all other actors. 

That is, its distance to all other actors is short. Thus, we can use the short-

est distance to compute this measure. Let the shortest distance from actor i

to actor j be d(i, j) (measured as the number of links in a shortest path).  

Undirected Graph: The closeness centrality CC(i) of actor i is defined as

.
),(

1
)(

1

n

j

C

jid

n
iC (3)

The value of this measure also ranges between 0 and 1 as n 1 is the mini-

mum value of the denominator, which is the sum of the shortest distances 

from i to all other actors. Note that this equation is only meaningful for a 

connected graph.

Directed Graph: The same equation can be used for a directed graph. The 

distance computation needs to consider directions of links or edges.  

Betweenness Centrality 

If two non-adjacent actors j and k want to interact and actor i is on the path 

between j and k, then i may have some control over their interactions. Be-

tweenness measures this control of i over other pairs of actors. Thus, if i is 

on the paths of many such interactions, then i is an important actor.  

Undirected Graph: Let pjk be the number of shortest paths between actors 

j and k. The betweenness of an actor i is defined as the number of shortest 

paths that pass i (denoted by pjk(i), j i and k i) normalized by the total 

number of shortest paths of all pairs of actors not including i:

.
)(

)(
kj jk

jk

B
p

ip
iC (4)

Note that there may be multiple shortest paths between actor j and actor k.

Some pass i and some do not. We assume that all paths are equally likely 

to be used. CB(i) has a minimum of 0, attained when i falls on no shortest 

path. Its maximum is (n 1)(n 2)/2, which is the number of pairs of actors 

not including i.

In the network of Fig. 7.2, actor 1 is the most central actor. It lies on all 

15 shortest paths linking the other 6 actors. CB(1) has the maximum value 

of 15, and CB(2) = CB(3) = CB(4) = CB(5) = CB(6) = CB(7) = 0. 



7.1 Social Network Analysis      241 

Fig. 7.2. An example of a network illustrating the betweenness centrality 

If we are to ensure that the value range is between 0 and 1, we can normal-

ize it with (n 1)(n 2)/2, which is the maximum value of CB(i). The stan-

dardized betweenness of actor i is defined as

)2)(1(

)(
2

)('

nn

p

ip

iC
kj jk

jk

B .
(5)

Unlike the closeness measure, the betweenness can be computed even if 

the graph is not connected.  

Directed Graph: The same equation can be used but must be multiplied 

by 2 because there are now (n 1)(n 2) pairs considering a path from j to k

is different from a path from k to j. Likewise, pjk must consider paths from 

both directions.  

7.1.2  Prestige 

Prestige is a more refined measure of prominence of an actor than central-

ity as we will see below. We need to distinguish between ties sent (out-

links) and ties received (in-links). A prestigious actor is defined as one 

who is object of extensive ties as a recipient. In other words, to compute 

the prestige of an actor, we only look at the ties (links) directed or pointed 

to the actor (in-links). Hence, the prestige cannot be computed unless the 

relation is directional or the graph is directed. The main difference between 

the concepts of centrality and prestige is that centrality focuses on out-

links while prestige focuses on in-links. We define three prestige measures. 

The third prestige measure (i.e., rank prestige) forms the basis of most 

Web page link analysis algorithms, including PageRank and HITS.  

6

2

7
3

4

1

5



242      7 Link Analysis

Degree Prestige 

Based on the definition of the prestige, it is clear that an actor is prestig-

ious if it receives many in-links or nominations. Thus, the simplest meas-

ure of prestige of an actor i (denoted by PD(i)) is its in-degree.

,
1

)(
)(

n

id
iP I

D
(6)

where dI(i) is the in-degree of i (the number of in-links of i) and n is the to-

tal number of actors in the network. As in the degree centrality, dividing 

by n – 1 standardizes the prestige value to the range from 0 and 1. The 

maximum prestige value is 1 when every other actor links to or chooses 

actor i.

Proximity Prestige 

The degree index of prestige of an actor i only considers the actors that are 

adjacent to i. The proximity prestige generalizes it by considering both the 

actors directly and indirectly linked to actor i. That is, we consider every 

actor j that can reach i, i.e., there is a directed path from j to i.

Let Ii be the set of actors that can reach actor i, which is also called the 

influence domain of actor i. The proximity is defined as closeness or dis-

tance of other actors to i. Let d(j, i) denote the shortest path distance from 

actor j to actor i. Each link has the unit distance. To compute the proximity 

prestige, we use the average distance, which is 

,
||

),(

i

Ij

I

ijd

i
(7)

where |Ii| is the size of the set Ii. If we look at the ratio or proportion of ac-

tors who can reach i to the average distance that these actors are from i, we 

obtain the proximity prestige, which has the value range of [0, 1]: 

,
||),(

)1(||
)(

i

Ij

i
P

Iijd

nI
iP

i

(8)

where |Ii|/(n 1) is the proportion of actors that can reach actor i. In one ex-

treme, every actor can reach actor i, which gives |Ii|/(n 1) = 1. The de-

nominator is 1 if every actor is adjacent to i. Then, PP(i) = 1. On the other 

extreme, no actor can reach actor i. Then |Ii| = 0, and PP(i) = 0.



7.2 Co-Citation and Bibliographic Coupling      243 

Rank Prestige 

The above two prestige measures are based on in-degrees and distances. 

However, an important factor that has not been considered is the promi-

nence of individual actors who do the “voting” or “choosing.” In the real 

world, a person i chosen by an important person is more prestigious than 

chosen by a less important person. For example, a company CEO voting 

for a person is much more important than a worker voting for the person. If 

one’s circle of influence is full of prestigious actors, then one’s own pres-

tige is also high. Thus one’s prestige is affected by the ranks or statuses of 

the involved actors. Based on this intuition, the rank prestige PR(i) is de-

fined as a linear combination of links that point to i:

),(...)2()1()( 21 nPAPAPAiP RniRiRiR
(9)

where Aji = 1 if j points to i, and 0 otherwise. This equation says that an ac-

tor’s rank prestige is a function of the ranks of the actors who vote or 

choose the actor, which makes perfect sense.  

Since we have n equations for n actors, we can write them in the matrix 

notation. We use P to represent the vector that contains all the rank pres-

tige values, i.e., P = (PR(1), PR(2), …, PR(n))T (T means matrix trans-

pose). P is represented as a column vector. We use matrix A (where Aij = 1 

if i points to j, and 0 otherwise) to represent the adjacency matrix of the 

network or graph. As a notational convention, we use bold italic letters to 

represent matrices. We then have 

PAP
T . (10)

This equation is precisely the characteristic equation used for finding the 

eigensystem of the matrix AT. P is an eigenvector of AT.

This equation and the idea behind it turn out to be very useful in Web 

search. Indeed, the most well known ranking algorithms for Web search, 

PageRank and HITS, are directly related to this equation. Sect. 7.3 and 7.4 

will focus on these two algorithms and describe how to solve the equation 

to obtain the prestige value of each actor (or each page on the Web).  

7.2 Co-Citation and Bibliographic Coupling 

Another area of research concerned with links is the citation analysis of 

scholarly publications. A scholarly publication usually cites related prior 

work to acknowledge the origins of some ideas in the publication and to 

compare the new proposal with existing work. Citation analysis is an area 



244      7 Link Analysis

of bibliometric research, which studies citations to establish the relation-

ships between authors and their work.  

When a publication (also called a paper) cites another publication, a re-

lationship is established between the publications. Citation analysis uses 

these relationships (links) to perform various types of analysis. A citation 

can represent many types of links, such as links between authors, publica-

tions, journals and conferences, and fields, or even between countries. We 

will discuss two specific types of citation analysis, co-citation and biblio-

graphic coupling. The HITS algorithm of Sect. 7.4 is related to these two 

types of analysis.  

7.2.1 Co-Citation 

Co-citation is used to measure the similarity of two documents. If papers i
and j are both cited by paper k, then they may be said to be related in some 

sense to one another, even they do not directly cite each other. Figure 7.3 

shows that papers i and j are co-cited by paper k.  If papers i and j are cited 

together by many papers, it means that i and j have a strong relationship or 

similarity. The more papers they are cited by, the stronger their relation-

ship is.

Fig. 7.3. Paper i and paper j are co-cited by paper k

Let L be the citation matrix. Each cell of the matrix is defined as fol-

lows: Lij = 1 if paper i cites paper j, and 0 otherwise. Co-citation (denoted 

by Cij) is a similarity measure defined as the number of papers that co-cite 

i and j, and is computed with 

,
1

n

k

kjkiij LLC (11)

where n is the total number of papers. Cii is naturally the number of papers 

that cite i. A square matrix C can be formed with Cij, and it is called the co-

citation matrix. Co-citation is symmetric, Cij = Cji, and is commonly used 

as a similarity measure of two papers in clustering to group papers of simi-

lar topics together. 

i k

j



7.3 PageRank      245 

7.2.2 Bibliographic Coupling  

Bibliographic coupling operates on a similar principle, but in a way it is 

the mirror image of co-citation. Bibliographic coupling links papers that 

cite the same articles so that if papers i and j both cite paper k, they may be 

said to be related, even though they do not directly cite each other. The 

more papers they both cite, the stronger their similarity is. Figure 7.4 

shows both papers i and j citing (referencing) paper k.

Fig. 7.4. Both paper i and paper j cite paper k

We use Bij to represent the number of papers that are cited by both pa-

pers i and j:

.
1

n

k

jkikij LLB (12)

Bii is naturally the number of references (in the reference list) of paper i. A 

square matrix B can be formed with Bij, and it is called the bibliographic

coupling matrix. Bibliographic coupling is also symmetric and is regarded 

as a similarity measure of two papers in clustering. 

We will see later that two important types of pages on the Web, hubs

and authorities, found by the HITS algorithm are directly related to co-

citation and bibliographic coupling matrices.  

7.3 PageRank 

The year 1998 was an important year for Web link analysis and Web 

search. Both the PageRank and the HITS algorithms were reported in that 

year. HITS was presented by Jon Kleinberg in January, 1998 at the Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms. PageRank was 

presented by Sergey Brin and Larry Page at the Seventh International 

World Wide Web Conference (WWW7) in April, 1998. Based on the algo-

rithm, they built the search engine Google. The main ideas of PageRank 

and HITS are really quite similar. However, it is their dissimilarity that 

ik

j



246      7 Link Analysis

made a huge difference as we will see later. Since that year, PageRank has 

emerged as the dominant link analysis model for Web search, partly due to 

its query-independent evaluation of Web pages and its ability to combat 

spamming, and partly due to Google’s business success. In this section, we 

focus on PageRank. In the next section, we discuss HITS. A detailed study 

of these algorithms can also be found in [304].

PageRank relies on the democratic nature of the Web by using its vast 

link structure as an indicator of an individual page's quality. In essence, 

PageRank interprets a hyperlink from page x to page y as a vote, by page x,

for page y. However, PageRank looks at more than just the sheer number 

of votes, or links that a page receives. It also analyzes the page that casts 

the vote. Votes casted by pages that are themselves “important” weigh 

more heavily and help to make other pages more “important.” This is ex-

actly the idea of rank prestige in social networks (see Sect. 7.1.2).  

7.3.1 PageRank Algorithm 

PageRank is a static ranking of Web pages in the sense that a PageRank 

value is computed for each page off-line and it does not depend on search 

queries. Since PageRank is based on the measure of prestige in social net-

works, the PageRank value of each page can be regarded as its prestige. 

We now derive the PageRank formula. Let us first state some main con-

cepts again in the Web context.

In-links of page i: These are the hyperlinks that point to page i from other 

pages. Usually, hyperlinks from the same site are not considered. 

Out-links of page i: These are the hyperlinks that point out to other pages 

from page i. Usually, links to pages of the same site are not considered. 

From the perspective of prestige, we use the following to derive the Pag-

eRank algorithm.  

1. A hyperlink from a page pointing to another page is an implicit convey-

ance of authority to the target page. Thus, the more in-links that a page i

receives, the more prestige the page i has.  

2. Pages that point to page i also have their own prestige scores. A page 

with a higher prestige score pointing to i is more important than a page 

with a lower prestige score pointing to i. In other words, a page is im-

portant if it is pointed to by other important pages.  

According to rank prestige in social networks, the importance of page i (i’s 

PageRank score) is determined by summing up the PageRank scores of all 

pages that point to i. Since a page may point to many other pages, its pres-



7.3 PageRank      247 

tige score should be shared among all the pages that it points to. Notice the 

difference from rank prestige, where the prestige score is not shared.  

To formulate the above ideas, we treat the Web as a directed graph G = 

(V, E), where V is the set of vertices or nodes, i.e., the set of all pages, and 

E is the set of directed edges in the graph, i.e., hyperlinks. Let the total 

number of pages on the Web be n (i.e., n = |V|). The PageRank score of the 

page i (denoted by P(i)) is defined by: 

,
)(

)(
),( Eij jO

jP
iP (13)

where Oj is the number of out-links of page j. Mathematically, we have a 

system of n linear equations (13) with n unknowns. We can use a matrix to 

represent all the equations. Let P be a n-dimensional column vector of 

PageRank values, i.e.,

P = (P(1), P(2), …, P(n))T.

Let A be the adjacency matrix of our graph with  

otherwise0

),(if
1

Eji
OA
iij

(14)

We can write the system of n equations with (similar to Equation 10) 

PAP
T . (15)

This is the characteristic equation of the eigensystem, where the solu-

tion to P is an eigenvector with the corresponding eigenvalue of 1.  Since 

this is a circular definition, an iterative algorithm is used to solve it. It turns 

out that if some conditions are satisfied (which will be described shortly), 1 

is the largest eigenvalue and the PageRank vector P is the principal ei-

genvector. A well known mathematical technique called power iteration

can be used to find P.

However, the problem is that Equation (15) does not quite suffice be-

cause the Web graph does not meet the conditions. To introduce these 

conditions and the enhanced equation, let us derive the same Equation (15) 

based on the Markov chain [207].  

In the Markov chain model, each Web page or node in the Web graph is 

regarded as a state. A hyperlink is a transition, which leads from one state 

to another state with a probability. Thus, this framework models Web surf-

ing as a stochastic process. It models a Web surfer randomly surfing the 

Web as a state transition in the Markov chain. Recall that we used Oi to 



248      7 Link Analysis

denote the number of out-links of a node i. Each transition probability is 

1/Oi if we assume the Web surfer will click the hyperlinks in the page i

uniformly at random, the “back” button on the browser is not used and the 

surfer does not type in an URL. Let A be the state transition probability 

matrix, a square matrix of the following format, 

nnnn

n

n

AAA

AAA

AAA

...

...

...

...

...

...

.

21

22221

11211

A

Aij represents the transition probability that the surfer in state i (page i)

will move to state j (page j). Aij is defined exactly as in Equation (14). 

Given an initial probability distribution vector that a surfer is at each 

state (or page) p0 = (p0(1), p0(2), …, p0(n))T (a column vector) and an n n

transition probability matrix A, we have

n

i

ip
1

0 1)( (16)

n

j

ijA
1

1. (17)

Equation (17) is not quite true for some Web pages because they have 

no out-links. If the matrix A satisfies Equation (17), we say that A is the 

stochastic matrix of a Markov chain.  Let us assume A is a stochastic ma-

trix for the time being and deal with it not being that later.  

In a Markov chain, a question of common interest is: Given the initial 

probability distribution p0 at the beginning, what is the probability that m

steps/transitions later that the Markov chain will be at each state j? We can 

determine the probability that the system (or the random surfer) is in state 

j after 1 step (1 state transition) by using the following reasoning:  

,)()1()(
1

01

n

i

ij ipAjp (18)

where Aij(1) is the probability of going from i to j after 1 transition, and 

Aij(1) = Aij. We can write it with a matrix: 



7.3 PageRank      249 

0pAp
T

1 . (19)

In general, the probability distribution after k steps/transitions is: 

1-kk pAp
T

. (20)

Equation (20) looks very similar to Equation (15). We are getting there.

By the Ergodic Theorem of Markov chains [207], a finite Markov chain 

defined by the stochastic transition matrix A has a unique stationary

probability distribution if A is irreducible and aperiodic. These mathe-

matical terms will be defined as we go along.

The stationary probability distribution means that after a series of transi-

tions pk will converge to a steady-state probability vector  regardless of 

the choice of the initial probability vector p0, i.e.,  

pk
k
lim . (21)

When we reach the steady-state, we have pk = pk+1 = , and thus  =A
T .

 is the principal eigenvector of AT with eigenvalue of 1. In PageRank, 

is used as the PageRank vector P. Thus, we again obtain Equation (15), 

which is re-produced here as Equation (22): 

PAP
T . (22)

 Using the stationary probability distribution as the PageRank vector is 

reasonable and quite intuitive because it reflects the long-run probabilities 

that a random surfer will visit the pages. A page has a high prestige if the 

probability of visiting it is high.  

Now let us come back to the real Web context and see whether the 

above conditions are satisfied, i.e., whether A is a stochastic matrix and 

whether it is irreducible and aperiodic. In fact, none of them is satisfied. 

Hence, we need to extend the ideal-case Equation (22) to produce the “ac-

tual PageRank model”. Let us look at each condition below.  

First of all, A is not a stochastic (transition) matrix. A stochastic ma-

trix is the transition matrix for a finite Markov chain whose entries in each 

row are non-negative real numbers and sum to 1 (i.e., Equation 17). This 

requires that every Web page must have at least one out-link. This is not 

true on the Web because many pages have no out-links, which are 

reflected in transition matrix A by some rows of complete 0’s. Such pages 

are called the dangling pages (nodes).

Example 1: Figure 7.5 shows an example of a hyperlink graph.  



250      7 Link Analysis

Fig. 7.5. An example of a hyperlink graph 

If we assume that the Web surfer will click the hyperlinks in a page uni-

formly at random, we have the following transition probability matrix: 

02121000

000000

313103100

000010

00021021

00021210

A . (23)

For example A12 = A13 = 1/2 because node 1 has two out-links. We can see 

that A is not a stochstic matrix because the fifth row is all 0’s, i.e., page 5 

is a dangling page.  

We can fix this problem in several ways in order to convert A to a sto-

chastic transition matrix. We describe only two ways here:  

1. Remove those pages with no out-links from the system during the Pag-

eRank computation as these pages do not affect the ranking of any other 

page directly. Out-links from other pages pointing to these pages are 

also removed. After PageRanks are computed, these pages and hyper-

links pointing to them can be added in. Their PageRanks are easy to cal-

culate based on Equation (22). Note that the transition probabilities of 

those pages with removed links will be slightly affected but not signifi-

cantly. This method is suggested in [68].  

2. Add a complete set of outgoing links from each such page i to all the 

pages on the Web. Thus the transition probability of going from i to 

every page is 1/n assuming uniform probability distribution. That is, we 

replace each row containing all 0’s with e/n, where e is n-dimensional 

vector of all 1’s.  

If we use the second method to make A a stochastic matrix by adding a 

link from page 5 to every page, we obtain 

3 4

6

1

2

5



7.3 PageRank      251 

02121000

616161616161

313103100

000010

00021021

00021210

A . (24)

Below, we assume that either one of the above is done to make A a sto-

chastic matrix.  

Second, A is not irreducible. Irreducible means that the Web graph G is 

strongly connected. 

Definition (strongly connected): A directed graph G = (V, E) is strongly 

connected if and only if, for each pair of nodes u, v V, there is a path 

from u to v.

 A general Web graph represented by A is not irreducible because for 

some pair of nodes u and v, there is no path from u to v. For example, in 

Fig. 7.5, there is no directed path from node 3 to node 4. The adjustment in 

Equation (24) is not enough to ensure irreducibility. That is, in A , there is 

still no directed path from node 3 to node 4. This problem and the next 

problem can be dealt with using a single strategy (to be described shortly). 

Finally, A is not aperiodic. A state i in a Markov chain being periodic 

means that there exists a directed cycle that the chain has to traverse.

Definition (aperiodic): A state i is periodic with period k > 1 if k is the 

smallest number such that all paths leading from state i back to state i

have a length that is a multiple of k. If a state is not periodic (i.e., k = 1), 

it is aperiodic. A Markov chain is aperiodic if all states are aperiodic. 

Example 2: Figure 7.6 shows a periodic Markov chain with k = 3. The 

transition matrix is given on the left. Each state in this chain has a period 

of 3. For example, if we start from state 1, to come back to state 1 the only 

path is 1-2-3-1 for some number of times, say h. Thus any return to state 1 

will take 3h transitions. In the Web, there could be many such cases.  

Fig. 7.6. A periodic Markov chain with k = 3.  

1

001

100

010

A 1

1

2

1

3



252      7 Link Analysis

It is easy to deal with the above two problems with a single strategy.  

We add a link from each page to every page and give each link a small 

transition probability controlled by a parameter d.

The augmented transition matrix becomes irreducible because it is clearly 

strongly connected. It is also aperiodic because the situation in Fig. 7.6 no 

longer exists as we now have paths of all possible lengths from state i back 

to state i. That is, the random surfer does not have to traverse a fixed cycle 

for any state. After this augmentation, we obtain an improved PageRank 

model. In this model, at a page, the random surfer has two options:  

1. With probability d, he randomly chooses an out-link to follow. 

2. With probability 1 d, he jumps to a random page without a link.  

Equation (25) gives the improved model, 

PA
E

P
Td

n
d )1( (25)

where E is eeT (e is a column vector of all 1’s) and thus E is a n n square 

matrix of all 1’s. 1/n is the probability of jumping to a particular page. n is 

the total number of nodes in the Web graph. Note that Equation (25) as-

sumes that A has already been made a stochastic matrix.  

Example 3: If we follow our example in Fig. 7.5 and Equation (24) (we 

use A for A here), the augmented transition matrix is  

061610619061061061

157610619061061061

15761061061061061

061610619061157157

061610611211061157

06161061061157061

)1( Td
n

d A
E

(26)

(1 d)E/n + dAT is a stochastic matrix (but transposed). It is also irre-

ducible and aperiodic as we discussed above. Here we use d = 0.9.

If we scale Equation (25) so that eTP = n, we obtain 

PAeP
Tdd )1( . (27)

Before scaling, we have eTP = 1 (i.e., P(1) + P(2) + … + P(n) = 1 if we re-

call that P is the stationary probability vector of the Markov chain). The 

scaling is equivalent to multiplying n on both sides of Equation (25).  



7.3 PageRank      253 

This gives us the PageRank formula for each page i as follows:

n

j

ji jPAddiP
1

),()1()( (28)

which is equivalent to the formula given in the PageRank papers [68, 422]: 

Eij jO

jP
ddiP

),(

)(
)1()( . (29)

The parameter d is called the damping factor which can be set to between 

0 and 1. d = 0.85 is used in [68, 422].  

The computation of PageRank values of the Web pages can be done us-

ing the well known power iteration method [203], which produces the 

principal eigenvector with the eigenvalue of 1. The algorithm is simple, 

and is given in Fig. 7.7. One can start with any initial assignments of Pag-

eRank values. The iteration ends when the PageRank values do not change 

much or converge. In Fig. 7.7, the iteration ends after the 1-norm of the re-

sidual vector is less than a pre-specified threshold . Note that the 1-norm 

for a vector is simply the sum of all the components.  

PageRank-Iterate(G)

P0 e/n

k 1

repeat

;)1( 1-k
T

k dd PAeP

k k + 1; 

until ||Pk – Pk-1||1 <

return Pk

Fig. 7.7. The power iteration method for PageRank 

Since we are only interested in the ranking of the pages, the actual conver-

gence may not be necessary. Thus, fewer iterations are needed. In [68], it 

is reported that on a database of 322 million links the algorithm converges 

to an acceptable tolerance in roughly 52 iterations.  

7.3.2 Strengths and Weaknesses of PageRank 

The main advantage of PageRank is its ability to fight spam. A page is im-

portant if the pages pointing to it are important. Since it is not easy for 

Web page owner to add in-links into his/her page from other important 

pages, it is thus not easy to influence PageRank. Nevertheless, there are 



254      7 Link Analysis

reported ways to influence PageRank. Recognizing and fighting spam is an 

important issue in Web search.  

Another major advantage of PageRank is that it is a global measure and 

is query independent. That is, the PageRank values of all the pages on the 

Web are computed and saved off-line rather than at the query time. At the 

query time, only a lookup is needed to find the value to be integrated with 

other strategies to rank the pages. It is thus very efficient at query time. 

Both these two advantages contributed greatly to Google’s success.  

The main criticism is also the query-independence nature of PageRank. 

It could not distinguish between pages that are authoritative in general and 

pages that are authoritative on the query topic. Google may have other 

ways to deal with the problem, which we do not know due to the proprie-

tary nature of Google. Another criticism is that PageRank does not con-

sider time. Let us give some explanation to this. 

7.3.3 Timed PageRank 

The Web is a dynamic environment, and it changes constantly. Quality 

pages in the past may not be quality pages now or in the future. Thus, 

search has a temporal dimension. An algorithm called TimedPageRank

given in [326, 585] adds the temporal dimension to PageRank. The moti-

vations are:

1. Users are often interested in the latest information. Apart from pages 

that contain well-established facts and classics which do not change sig-

nificantly over time, most contents on the Web change constantly. New 

pages or contents are added, and ideally, outdated contents and pages 

are deleted. However, in practice many outdated pages and links are not 

deleted. This causes problems for Web search because such outdated 

pages may still be ranked very high.  

2. PageRank favors pages that have many in-links. To some extent, we can 

say that it favors older pages because they have existed on the Web for a 

long time and thus have accumulated many in-links. Then the problem 

is that new pages which are of high quality and also give the up-to-date 

information will not be assigned high scores and consequently will not 

be ranked high because they have fewer or no in-links. It is thus difficult 

for users to find the latest information on the Web based on PageRank. 

The idea of TimedPageRank is simple. Instead of using a constant damp-

ing factor d as the parameter in PageRank, TimedPageRank uses a function 

of time f(t) (0 f(t)  1), where t is the difference between the current time 

and the time when the page was last updated. f(t) returns a probability that 



7.4 HITS      255 

the Web surfer will follow an actual link on the page. 1 f(t) returns the 

probability that the surfer will jump to a random page. Thus, at a particular 

page i, the Web surfer has two options:  

1. With probability f(ti), he randomly chooses an out-going link to follow. 

2. With probability 1 f(ti), he jumps to a random page without a link.  

The intuition here is that if the page was last updated (or created) a long 

time ago, the pages that it cites (points to) are even older and are probably 

out of date. Then the 1 f(t) value for such a page should be large, which 

means that the surfer will have a high probability of jumping to a random 

page. If a page is new, then its 1 f(t) value should be small, which means 

that the surfer will have a high probability to follow an out-link of the page 

and a small probability of jumping to a random page.  

For a complete new page in a Web site, which does not have any in-

links at all, the method given in [326] uses the average TimedPageRank 

value of the past pages in the Web site. 

Finally, we note again that the link-based ranking is not the only strat-

egy used in a search engine. Many other information retrieval methods, 

heuristics and empirical parameters are also employed. However, their de-

tails are not published. We also note that PageRank is not the only link-

based static and global ranking algorithm. All major search engines, such 

as Yahoo! and MSN, have their own algorithms but are unpublished.   

7.4 HITS 

HITS stands for Hypertext Induced Topic Search [281]. Unlike PageR-

ank which is a static ranking algorithm, HITS is search query dependent. 

When the user issues a search query, HITS first expands the list of relevant 

pages returned by a search engine and then produces two rankings of the 

expanded set of pages, authority ranking and hub ranking.

An authority is a page with many in-links. The idea is that the page 

may have good or authoritative content on some topic and thus many peo-

ple trust it and link to it. A hub is a page with many out-links. The page 

serves as an organizer of the information on a particular topic and points to 

many good authority pages on the topic. When a user comes to this hub 

page, he/she will find many useful links which take him/her to good con-

tent pages on the topic. Figure 7.8 shows an authority page and a hub page.  

The key idea of HITS is that a good hub points to many good authorities 

and a good authority is pointed to by many good hubs. Thus, authorities 

and hubs have a mutual reinforcement relationship. Figure 7.9 shows a 



256      7 Link Analysis

set of densely linked authorities and hubs (a bipartite sub-graph).

Below, we first present the HITS algorithm, and also make a connection 

between HITS and co-citation and bibliographic coupling in bibliometric 

research. We then discuss the strengths and weaknesses of HITS, and de-

scribe some possible ways to deal with its weaknesses.  

Fig. 7.8. An authority page and a hub page 

Fig. 7.9. A densely linked set of authorities and hubs 

7.4.1 HITS Algorithm 

Before describing the HITS algorithm, let us first describe how HITS col-

lects pages to be ranked. Given a broad search query, q, HITS collects a set 

of pages as follows: 

1. It sends the query q to a search engine system. It then collects t (t = 200 

is used in the HITS paper) highest ranked pages, which assume to be 

highly relevant to the search query. This set is called the root set W.

2. It then grows W by including any page pointed to by a page in W and 

any page that points to a page in W. This gives a larger set called S.

However, this set can be very large. The algorithm restricts its size by 

allowing each page in W to bring at most k pages (k = 50 is used in the 

HITS paper) pointing to it into S. The set S is called the base set.

An authority A hub

Authorities  Hubs 



7.4 HITS      257 

HITS then works on the pages in S, and assigns every page in S an author-

ity score and a hub score. Let the number of pages to be studied be n. We 

again use G = (V, E) to denote the (directed) link graph of S. V is the set of 

pages (or nodes) and E is the set of directed edges (or links). We use L to 

denote the adjacency matrix of the graph.  

otherwise0

),(if1 Eji
Lij (30)

Let the authority score of the page i be a(i), and the hub score of page i
be h(i). The mutual reinforcing relationship of the two scores is repre-

sented as follows: 

Eij

jhia
),(

)()( (31)

Eji

jaih
),(

)()( (32)

Writing them in the matrix form, we use a to denote the column vector 

with all the authority scores, a = (a(1), a(2), …, a(n))T, and use h to denote 

the column vector with all the authority scores, h = (h(1), h(2), …, h(n))T,

a = L
T
h (33)

h = La (34)

The computation of authority scores and hub scores is basically the same 

as the computation of the PageRank scores using the power iteration 

method. If we use ak and hk to denote authority and hub scores at the kth it-

eration, the iterative processes for generating the final solutions are

ak = L
T
Lak 1 (35)

hk = LL
T
hk 1 (36)

starting with 

a0 = h0 = (1, 1, …, 1). (37)

Note that Equation (35) (or Equation 36) does not use the hub (or au-

thority) vector due to substitutions of Equation (33) and Equation (34).  

After each iteration, the values are also normalized (to keep them small) 

so that



258      7 Link Analysis

n

i

ia
1

1)( (38)

n

i

ih
1

1)( (39)

The power iteration algorithm for HITS is given in Fig. 7.10. The itera-

tion ends after the 1-norms of the residual vectors are less than some 

thresholds a and h. Hence, the algorithm finds the principal eigenvectors 

at “equilibrium” as in PageRank. The pages with large authority and hub 

scores are better authorities and hubs respectively. HITS will select a few 

top ranked pages as authorities and hubs, and return them to the user.  

Although HITS will always converge, there is a problem with unique-

ness of limiting (converged) authority and hub vectors. It is shown that for 

certain types of graphs, different initializations to the power method pro-

duce different final authority and hub vectors. Some results can be incon-

sistent or wrong. Farahat et al. [171] gave several examples. The heart of 

the problem is that there are repeated dominant (principal) eigenvalues 

(several eigenvalues are the same and are dominant eigenvalues), which 

are caused by the problem that LTL (respectively LLT) is reducible [303]. 

The first PageRank solution (Equation 22) has the same problem. How-

ever, the PageRank inventors found a way to get around the problem. A 

modification similar to PageRank may be applied to HITS.  

HITS-Iterate(G)

a0 h0  (1, 1, …, 1); 

k  1 

Repeat

;1k
T

k LaLa

;1k
T

k hLLh

ak ak /||ak||1; // normalization 

hk hk /||hk||1; // normalization

k k + 1; 

until ||ak – ak-1||1 < a and ||hk – hk-1||1 < h;

return ak and hk

Fig. 7.10. The HITS algorithm based on power iteration 



7.4 HITS      259 

7.4.2 Finding Other Eigenvectors 

The HITS algorithm given in Fig. 7.10 finds the principal eigenvectors, 

which in a sense represent the most densely connected authorities and hubs 

in the graph G defined by a query. However, in some cases, we may also 

be interested in finding several densely linked collections of hubs and au-

thorities among the same base set of pages. Each of such collections could 

potentially be relevant to the query topic, but they could be well-separated 

from one another in the graph G for a variety of reasons. For example,  

1. The query string may be ambiguous with several very different mean-

ings, e.g., “jaguar”, which could be a cat or a car.  

2. The query string may represent a topic that may arise as a term in the 

multiple communities, e.g. “classification”.

3. The query string may refer to a highly polarized issue, involving groups 

that are not likely to link to one another, e.g. “abortion”.  

In each of these examples, the relevant pages can be naturally grouped into 

several clusters, also called communities. In general, the top ranked au-

thorities and hubs represent the major cluster (or community). The smaller 

clusters (or communities), which are also represented by bipartite sub-

graphs as that in Fig. 7.9, can be found by computing non-principal eigen-

vectors. Non-principal eigenvectors are calculated in a similar way to 

power iteration using methods such as orthogonal iteration and QR itera-

tion. We will not discuss the details of these methods. Interested readers 

can refer to the book by Golub and Van Loan [203].  

7.4.3 Relationships with Co-Citation and Bibliographic 
Coupling

Authority pages and hub pages have their matches in the bibliometric cita-

tion context. An authority page is like an influential research paper (publi-

cation) which is cited by many subsequent papers. A hub page is like a 

survey paper which cites many other papers (including those influential 

papers). It is no surprise that there is a connection between authority and 

hub, and co-citation and bibliographic coupling.  

Recall that co-citation of pages i and j, denoted by Cij, is computed as 

ij
T

n

k

kjkiij LLC )(
1

LL . (40)

This shows that the authority matrix (LTL) of HITS is in fact the co-

citation matrix C in the Web context. Likewise, recall that bibliographic 



260      7 Link Analysis

coupling of two pages i and j, denoted by Bij, is computed as 

,)(
1

ij
T

n

k

jkikij LLB LL (41)

which shows that the hub matrix (LLT) of HITS is the bibliographic cou-

pling matrix B in the Web context. 

7.4.4 Strengths and Weaknesses of HITS 

The main strength of HITS [281] is its ability to rank pages according to 

the query topic, which may be able to provide more relevant authority and 

hub pages. The ranking may also be combined with information retrieval 

based rankings. However, HITS has several disadvantages.  

First of all, it does not have the anti-spam capability of PageRank. It is 

quite easy to influence HITS by adding out-links from one’s own page 

to point to many good authorities. This boosts the hub score of the page. 

Because hub and authority scores are interdependent, it in turn also in-

creases the authority score of the page.  

Another problem of HITS is topic drift. In expanding the root set, it can 

easily collect many pages (including authority pages and hub pages) 

which have nothing to do the search topic because out-links of a page 

may not point to pages that are relevant to the topic and in-links to pages 

in the root set may be irrelevant as well because people put hyperlinks 

for all kinds of reasons, including spamming.  

The query time evaluation is also a major drawback. Getting the root 

set, expanding it and then performing eigenvector computation are all 

time consuming operations. 

Over the years, many researchers tried to deal with these problems. We 

briefly discuss some of them below.  

It was reported by several researchers in [52, 310, 405] that small 

changes to the Web graph topology can significantly change the final au-

thority and hub vectors. Minor perturbations have little effect on PageR-

ank, which is more stable than HITS. This is essentially due to the random 

jump step of PageRank. Ng et al. [405] proposed a method by introducing 

the same random jump step to HITS (by jumping to the base set uniformly 

at random with probability d), and showed that it could improve the stabil-

ity of HITS significantly. Lempel and Moran [310] proposed SALSA, a

stochastic algorithm for link structure analysis. SALSA combines some 

features of both PageRank and HITS to improve the authority and hub 

computation. It casts the problem as two Markov chains, an authority 



7.5 Community Discovery      261 

Markov chain and a hub Markov chain. SALSA is less susceptible to spam 

since the coupling between hub and authority scores is much less strict. 

Bharat and Henzinger [52] proposed a simple method to fight two site 

nepotistic links. That means that a set of pages on one host points to a sin-

gle page on a second host. This drives up the hub scores of the pages on 

the first host and the authority score of the page on the second host. A 

similar thing can be done for hubs. These links may be authored by the 

same person and thus are regarded as “nepotistic” links to drive up the 

ranking of the target pages. [52] suggests weighting the links to deal with 

this problem. That is, if there are k edges from documents on a first host to 

a single document on a second host we give each edge an authority 

weight of 1/k. If there are l edges from a single page on a first host to a set 

of pages on a second host, we give each edge a hub weight of 1/l. These 

weights are used in the authority and hub computation. There are much 

more sophisticated spam techniques now involving more than two sites.  

Regarding the topic drifting of HITS, existing fixes are mainly based on 

content similarity comparison during the expansion of the root set. In [88], 

if an expanded page is too different from the pages in the root set in terms 

of content similarity (based on cosine similarity), it is discarded. The re-

maining links are also weighted according to similarity. [88] proposes a 

method that uses the similarity between the anchor text of a link and the 

search topic to weight the link (instead of giving each link 1 as in HITS). 

[84] goes further to segment the page based on the DOM (Document Ob-

ject Model) tree structure to identify the blocks or subtrees that are more 

related to the query topic instead of regarding the whole page as relevant to 

the search query. This is a good way to deal with multi-topic pages, which 

are abundant on the Web. A recent work on this is block-based link analy-

sis [78], which segments each Web page into different blocks. Each block 

is given a different importance value according to its location in the page 

and other information. The importance value is then used to weight the 

links in the HITS (and also PageRank) computation. This will reduce the 

impact of unimportant links, which usually cause topic drifting and may 

even be a link spam.  

7.5 Community Discovery  

Intuitively, a community is simply a group of entities (e.g., people or or-

ganizations) that shares a common interest or is involved in an activity or 

event. In Sect. 7.4.2, we showed that the HITS algorithm can be used to 

find communities. The communities are represented by dense bipartite sub-

graphs. We now describe several other community finding algorithms. 



262      7 Link Analysis

Apart from the Web, communities also exist in emails and text documents. 

This section describes two community finding algorithms for the Web, one 

community finding algorithm for emails, and one community finding algo-

rithm for text documents.  

There are many reasons for discovering communities. For example, in 

the context of the Web, Kumar et al. [293] listed three reasons:  

1. Communities provide valuable and possibly the most reliable, timely, 

and up-to-date information resources for a user interested in them.  

2. They represent the sociology of the Web: studying them gives insights 

into the evolution of the Web.  

3. They enable target advertising at a very precise level.  

7.5.1 Problem Definition

Definition (community): Given a finite set of entities S = {s1, s2, …, sn}

of the same type, a community is a pair C = (T, G), where T is the 

community theme and G S is the set of all entities in S that shares the 

theme T. If si G, si is said to be a member of the community C.

Some remarks about this definition are in order: 

A theme defines a community. That is, given a theme T, the set of 

members of the community is uniquely determined. Thus, two commu-

nities are equal if they have the same theme.  

A theme can be defined arbitrarily. For example, it can be an event (e.g., 

a sport event or a scandal) or a concept (e.g., Web mining). 

An entity si in S can be in any number of communities. That is, commu-

nities may overlap, or multiple communities may share members.  

The entities in S are of the same type. For example, this definition does 

not allow people and organizations to be in the same community.  

By no means does this definition cover every aspect of communities in 

the real world. For example, it does not consider the temporal dimension 

of communities. Usually a community exists within a specific period of 

time. Similarly, an entity may belong to a community during some time 

periods.

This is a conceptual definition. In practice, different community mining 

algorithms have their own operational definitions which usually depend 

on how communities manifest themselves in the given data (which we 

will discuss shortly). Furthermore, the algorithms may not be able to 

discover all the members of a community or its precise theme.   

Communities may also have hierarchical structures.  



7.5 Community Discovery      263 

Definition (sub-community, super-community, and sub-theme): A 

community (T, G) may have a set of sub-communities {(T1, G1), …, 

(Tm, Gm)}, where Ti is a sub-theme of T and Gi G. (T, G) is also called 

a super-community of (Ti, Gi). In the same way, each sub-community 

(Ti, Gi) can be further decomposed, which gives us a community hier-

archy.

Community Manifestation in Data: Given a data set, which can be a set 

of Web pages, a collection of emails, or a set of text documents, we want 

to find communities of entities in the data. However, the data itself usually 

does not explicitly give us the themes or the entities (community members) 

associated with the themes. The system needs to discover the hidden com-

munity structures. Thus, the first issue that we need to know is how com-

munities manifest themselves. From such manifested evidences, the system 

can discover possible communities. Different types of data may have dif-

ferent forms of manifestation. We give three examples.  

Web Pages:

1. Hyperlinks: A group of content creators sharing a common interest is 

usually inter-connected through hyperlinks. That is, members in a com-

munity are more likely to be connected among themselves than outside 

the community.

2. Content words: Web pages of a community usually contain words that 

are related to the community theme.  

Emails:

1. Email exchange between entities: Members of a community are more 

likely to communicate with one another.  

2. Content words: Email contents of a community also contain words re-

lated to the theme of the community.  

Text documents:

1. Co-occurrence of entities: Members of a community are more likely to 

appear together in the same sentence and/or the same document.  

2. Content words: Words in sentences indicate the community theme.    

Clearly, the key form of manifestation of a community is that its members 

are linked in some way. The associated text often contains words that are 

indicative of the community theme.  

Objective of Community Discovery: Given a data set containing entities, 

we want to discover hidden communities of the entities. For each commu-

nity, we want to find the theme and its members. The theme is usually rep-

resented with a set of keywords.  



264      7 Link Analysis

7.5.2 Bipartite Core Communities 

HITS finds dense bipartite graph communities based on broad topic que-

ries. The question is whether it is possible to find all such communities ef-

ficiently from the crawl of the whole Web without using eigenvector com-

putation which is relatively inefficient. Kumar et al. [293] presented a 

technique for finding bipartite cores, which are defined as follows. 

Recall that the node set of a bipartite graph can be partitioned into two 

subsets, which we denote as set F and set C. A bipartite core is a com-

plete bipartite sub-graph with at least i nodes in F and at least j nodes in C.

A complete bipartite graph on node sets F and C contains all possible 

edges between the vertices of F and the vertices of C. Note that edges 

within F or within C are allowed here to suit the Web context, which devi-

ate from the traditional definition of a complete bipartite graph. Intuitively, 

the core is a small (i, j)-sized complete bipartite sub-graph of the commu-

nity, which contains some core members of the community but not all. 

The cores that we seek are directed, i.e., there is a set of i pages all of 

which link to a set of j pages, while no assumption is made of links out of 

the latter set of j pages.  Intuitively, the former is the set of pages created 

by members of the community, pointing to what they believe are the most 

valuable pages for that community.  For this reason we will refer to the i

pages that contain the links as fans, and the j pages that are referenced as 

centers (as in community centers). Fans are like specialized hubs, and cen-

ters are like authorities. Figure 7.11 shows an example of a bipartite core. 

Fig. 7.11. A (4, 3) bipartite core 

In Fig. 7.11, each fan page links to every center page. Since there are 

four fans and three centers, this is called a (4, 3) bipartite core. Such a core 

almost certainly represents a Web community, but a community may have 

multiple bipartite cores.  

Given a large number of pages crawled from the Web, which is repre-

sented as a graph, the procedure for finding bipartite cores consists of two 

major steps: pruning and core generation. 

4 Fans  3 Centers 



7.5 Community Discovery      265 

Step 1: Pruning 

We describe two types of pruning to remove those unqualified pages to be 

fans or centers. There are also other pruning methods given in [293].  

1. Pruning by in-degree: we can delete all pages that are very highly ref-

erenced (linked) on the Web, such as homepages of Web portals (e.g., 

Yahoo!, AOL, etc). These pages are referenced for a variety of reasons, 

having little to do with any single emerging community, and they can be 

safely deleted. That is, we delete pages with the number of in-links great 

than k, which is determined empirically (k = 50 in [293]).  

2. Iterative pruning of fans and centers: If we are interested in finding 

(i, j) cores, clearly any potential fan with an out-degree smaller than j

can be pruned and the associated edges deleted from the graph. Simi-

larly, any potential center with an in-degree smaller than i can be pruned 

and the corresponding edges deleted from the graph. This process can be 

done iteratively: when a fan gets pruned, some of the centers that it 

points to may have their in-degrees fall below the threshold i and qualify 

for pruning as a result. Similarly, when a center gets pruned, a fan that 

points to it could have its out-degree fall below its threshold of j and 

qualify for pruning. 

Step 2: Generating all (i, j) Cores 

After pruning, the remaining pages are used to discover cores. The method 

works as follows: Fixing j, we start with all (1, j) cores. This is simply the 

set of all vertices with out-degree at least j. We then construct all (2, j)

cores by checking every fan which also points to any center in a (1, j) core. 

All (3, j) cores can be found in the same fashion by checking every fan 

which points to any center in a (2, j) core, and so on. The idea is similar to 

the Apriori algorithm for association rule mining (see Chap. 2) as every 

proper subset of the fans in any (i, j) core forms a core of smaller size.  

Based on the algorithm, Kumar et al. found a large number of topic co-

herent cores from a crawl of the Web [293]. We note that this algorithm 

only finds the core pages of the communities, not all members (pages). It 

also does not find the themes of the communities or their hierarchical or-

ganizations.

7.5.3 Maximum Flow Communities 

Bipartite cores are usually very small and do not represent full communi-

ties. In this section, we define and find maximum flow communities based 

on the work of Flake et al. [180]. The algorithm requires the user to give a 



266      7 Link Analysis

set of seed pages, which are examples of the community that the user 

wishes to find.

Given a Web link graph G = (V, E), a maximum flow community is de-

fined as a collection C V of Web pages such that each member page u

C has more hyperlinks (in either direction) within the community C than 

outside of the community V-C. Identifying such a community is intractable 

in the general case because it can be mapped into a family of NP-complete 

graph partition problems. Thus, we need to approximate and recast it into a 

framework with less stringent conditions based on the network flow model 

from operations research, specifically the maximum flow model.  

The maximum flow model can be stated as follows: We are given a 

graph G = (V, E), where each edge (u, v) is thought of as having a positive 

capacity c(u, v) that limits the quantity of a product that may be shipped 

through the edge. In such a situation, it is often desirable to have the 

maximum amount of flow from a starting point s (called the source) and a 

terminal point t (called the sink). Intuitively, the maximum flow of the 

graph is determined by the bottleneck edges. For example, given the graph 

in Fig. 7.12 with the source s and the sink t, if every edge has the unit ca-

pacity, the bottleneck edges are W-X and Y-Z.  

Fig. 7.12. A simple flow network.  

The Max Flow-Min Cut theorem of Ford and Fulkerson [181] proves that 

the maximum flow of a network is identical to the minimum cut that sepa-

rates s and t. Many polynomial time algorithms exist for solving the s-t

maximum flow problem. If Fig. 7.12 is a Web link graph, it is natural to 

cut the edges W-X and Y-Z to produce two Web communities.

The basic idea of the approach in [180] is as follows: It starts with a set 

S of seed pages, which are example pages of the community that the user 

wishes to find. The system then crawls the Web to find more pages using 

the seed pages. A maximum flow algorithm is then applied to separate the 

community C involving the seed pages and the other pages. These steps 

may need to be repeated in order to find the desired community. Figure 

7.13 gives the algorithm.  

W  X 

Y  Z 
s t



7.5 Community Discovery      267 

The algorithm Find-Community is the control program. It takes a set S

of seed Web pages as input, and crawls to a fixed depth including in-links 

as well as out-links (with in-links found by querying a search engine). It 

then applies the procedure Max-Flow-Community to the induced graph G

from the crawl. After a community C is found, it ranks the pages in the 

community by the number of edges that each has inside of the community. 

Some highest ranked non-seed pages are added to the seed set. This is to 

create a big seed set for the next iteration in order to crawl more pages. 

The algorithm then iterates the procedure. Note that the first iteration may 

only identify a very small community. However, when new seeds are 

added, increasingly larger communities are identified. Heuristics are used 

to decide when to stop. 

The procedure Max-Flow-Community finds the actual community from 

G. Since a Web graph has no source and sink, it first augments the web 

Algorithm Find-Community (S)

while number of iteration is less than desired do

 build G = (V, E) by doing a fixed depth crawl starting from S;

k = |S|;

C = Max-Flow-Community(G, S, k);

 rank all v C by the number of edges in C;

 add the highest ranked non-seed vertices to S

end-while

return all v V still connected to the source s

Procedure Max-Flow-Community(G, S, k)
create artificial vertices, s and t and add to V;  // V is the vertex set of G.

for all v S do

 add (s, v) to E with c(s, v) =  // E is the edge set of G.

endfor

for all (u, v) E, u s do

c(u, v) = k;

if (v, u) E then

add (v, u) to E with c(v, u) = k

endif

endfor

for all v V, v S  {s, t} do

 add (v, t) to E with c(v, t) = 1 

endfor

Max-Flow(G, s, t);

return all v V still connected to s.

Fig. 7.13. The algorithm for mining maximum flow communities 



268      7 Link Analysis

graph by adding an artificial source, s, with infinite capacity edges routed 

to all seed vertices in S; making each pre-existing edge bidirectional and 

assigning each edge a constant capacity k. It then adds an artificial sink t

and routes all vertices except the source, the sink, and the seed vertices to t

with unit capacity. After augmenting the web graph, a residual flow graph 

is produced by a maximum flow procedure (Max-Flow()). All vertices ac-

cessible from s through non-zero positive edges form the desired result. 

The value k is heuristically chosen to be the size of the set S to ensure that 

after the artificial source and sink are added to the original graph, the same 

cuts will be produced as the original graph (see the proof in [179]). Figure 

7.14 shows the community finding process.  

Finally, we note that this algorithm does not find the theme of the com-

munity or the community hierarchy (i.e., sub-communities and so on).  

Fig. 7.14. Schematic representation of the community finding process 

7.5.4 Email Communities Based on Betweenness 

Email has become the predominant means of communication in the infor-

mation age. It has been established as an indicator of collaboration and 

knowledge (or information) exchange. Email exchanges provide plenty of 

data on personal communication for the discovery of shared interests and 

relationships between people, which were hard to discover previously. 

It is fairly straightforward to construct a graph based on email data. 

People are the vertices and the edges are added between people who corre-

sponded through email. Usually, the edge between two people is added if a 

minimum number of messages passed between them. The minimum num-

ber is controlled by a threshold, which can be tuned.  

To analyze an email graph or network, one can make use of all the cen-

trality measures and prestige measures discussed in Sect. 7.1. We now fo-

cus on community finding only.  

S

Community 

Artificial 

source

Cut set

Artificial 

sink

Outside of the 

community 



7.5 Community Discovery      269 

We are interested in people communities, which are subsets of vertices 

that are related. One way to identify communities is by partitioning the 

graph into discrete clusters such that there are few edges lying between the 

clusters. This definition is similar to that of the maximum flow commu-

nity. Betweenness in social networks is a natural measure for identifying 

those edges in between clusters or communities [523]. The idea is that in-

ter-community links, which are few, have high betweenness values, while 

the intra-community edges have low betweenness values. However, the be-

tweenness discussed in Sect. 7.1 is evaluated on each person in the net-

work. Here, we need to evaluate the betweenness of each edge. The idea is 

basically the same and Equation (4) can be used here without normaliza-

tion because we only find communities in a single graph. The betweenness 

of an edge is simply the number of shortest paths that pass it.  

If the graph is not connected, we identify communities from each con-

nected component. Given a connected graph, the method works iteratively 

in two steps (Fig. 7.15):

repeat

Compute the betweenness of each edge in the remaining graph; 

Remove the edge with the highest betweenness 

until the graph is suitably partitioned.  

Fig. 7.15. Community finding using the betweenness measure.   

Since the removal of an edge can strongly affect the betweenness of many 

other edges, we need to repeatedly re-compute the betweenness of all 

edges. The idea of the method is very similar to the minimum-cut method 

discussed in Sect. 7.5.3.

The stopping criteria can be designed according to applications. In gen-

eral, we consider that the smallest community is a triangle. The algorithm 

should stop producing more unconnected components if there is no way to 

generate triangle communities. A component of five or fewer vertices can-

not consist of two viable communities. The smallest such component is 

six, which has two triangles connected by one edge, see Fig. 7.16. If any 

discovered community does not have a triangle, it may not be considered 

as a community. Clearly, other stopping criteria can be used.  

Fig. 7.16. The smallest possible graph of two viable communities.  



270      7 Link Analysis

7.5.5 Overlapping Communities of Named Entities 

Most community discovery algorithms are based on graph partitioning, 

which means that an entity can belong to only a single community. How-

ever, in real life, a person can be in multiple communities (see the defini-

tion in Sect. 7.5.1). For example, he/she can be in the community of his/her 

family, the community of his/her colleagues and the community of his/her 

friends. A heuristic technique is presented in [325] for finding overlapping 

communities of entities in text documents.   

In the Web or email context, there are explicit links connecting entities 

and forming communities. In free text documents, no explicit links exist. 

Then the question is: what constitutes a link between two entities in text 

documents? As we indicated earlier, one simple technique is to regard two 

entities as being linked if they co-occur in the same sentence. This method 

is reasonable because if two people are mentioned in a sentence there is 

usually a relationship between them. 

The objective is to find entity communities from a text corpus, which 

could be a set of given documents or the returned pages from a search en-

gine using a given entity as the search query. An entity here refers to the 

name of a person or an organization.  

The algorithm in [325] consists of four steps:  

1. Building a link graph: The algorithm first parses each document. For 

each sentence, it identifies named entities contained in the sentence. If a 

sentence has more than one named entities, these entities are pair-wise 

linked. The keywords in the sentence are attached to the linked pairs to 

form their textual contents. All the other sentences are discarded. 

2. Finding all triangles: The algorithm then finds all triangles, which are 

the basic building blocks of communities. A triangle consists of three 

entities bound together. The reason for using triangles is that it has been 

observed by researchers that a community expands predominantly by 

triangles sharing a common edge. 

3. Finding community cores: It next finds community cores. A community 

core is a group of tightly bound triangles, which are relaxed complete 

sub-graphs (or cliques). Intuitively, a core consists of a set of tightly 

connected members of a community.  

4. Clustering around community cores: For those triangles and also entity 

pairs that are not in any core, they are assigned to cores according to 

their textual content similarities with the discovered cores.  

It is clear that in this algorithm a single entity can appear in multiple com-

munities because an entity can appear in multiple triangles. To finish off, 

the algorithm also ranks the entities in each community according to de-



Bibliographic Notes      271 

gree centrality. Keywords associated with the edges of each community 

are also ranked. The top keywords are assumed to represent the theme of 

the community. The technique has been applied to find communities of po-

litical figures and celebrities from Web documents with promising results. 

Bibliographic Notes 

Social network analysis has a relative long history. A large number of in-

teresting problems and algorithms were studied in the past 60 years. The 

book by Wasserman and Faust [540] is an authoritative text of the field. 

Co-citation [494] and bibliographic coupling [275] are from bibliometrics, 

which is a type of research method used in library and information science. 

The book edited by Borgman [58] is a good source of information on both 

the research and applications of bibliometrics. 

The use of social network analysis in the Web context (also called link 

analysis) started with the PageRank algorithm proposed by Brin and Page 

[68] and Page et al. [422], and the HITS algorithm proposed by Kleinberg 

[281]. PageRank is also the algorithm that powers the Google search en-

gine. Due to several weaknesses of HITS, many researchers have tried to 

improve it. Various enhancements were reported by Lempel and Moran 

[310], Bharat and Henzinger [52], Chakrabarti et al. [88], Cai et al. [78], 

etc. The book by Langville and Meyer [304] contains in-depth analyses of 

PageRank, HITS and many enhancements to HITS. Other works related to 

Web link analysis include those in [98, 226, 266, 368] on improving the 

PageRank computation, in [168] on searching workspace Web, in [103, 

182, 183, 416] on the evolution of the Web and the search engine influence 

on the Web, in [140, 142, 410, 516] on other link based models, in [34, 

440, 370, 371] on Web graph and its characteristics, in [37, 51, 235] on 

sampling of Web pages, and in [32, 425, 585] on the temporal dimension 

of Web search.

On community discovery, HITS can find some communities by comput-

ing non-principal eigenvectors [198, 281]. Kumar et al. [293] proposed the 

algorithm for finding bipartite cores. Flake et al. [179] introduced the 

maximum flow community mining. Ino et al. [249] presented a more strict 

definition of communities. Tyler et al. [523] gave the method for finding 

email communities based on betweenness. The algorithm for finding over-

lapping communities of named entities from texts was given by Li et al. 

[325]. More recent developments on communities and social networks on 

the Web can be found in [16, 21, 137, 158, 200, 518, 519, 561, 618]. 



 

 

 

 

 

 

 

Web Crawling 



1

Introduction

A web crawler (also known as a robot or a spider) is a system for the

bulk downloading of web pages. Web crawlers are used for a variety of

purposes. Most prominently, they are one of the main components of

web search engines, systems that assemble a corpus of web pages, index

them, and allow users to issue queries against the index and find the web

pages that match the queries. A related use is web archiving (a service

provided by e.g., the Internet archive [77]), where large sets of web pages

are periodically collected and archived for posterity. A third use is web

data mining, where web pages are analyzed for statistical properties,

or where data analytics is performed on them (an example would be

Attributor [7], a company that monitors the web for copyright and

trademark infringements). Finally, web monitoring services allow their

clients to submit standing queries, or triggers, and they continuously

crawl the web and notify clients of pages that match those queries (an

example would be GigaAlert [64]).

The raison d’être for web crawlers lies in the fact that the web is

not a centrally managed repository of information, but rather consists

176



177

of hundreds of millions of independent web content providers, each one

providing their own services, and many competing with one another.

In other words, the web can be viewed as a federated information repos-

itory, held together by a set of agreed-upon protocols and data formats,

such as the Transmission Control Protocol (TCP), the Domain Name

Service (DNS), the Hypertext Transfer Protocol (HTTP), the Hyper-

text Markup Language (HTML) and the robots exclusion protocol. So,

content aggregators (such as search engines or web data miners) have

two choices: They can either adopt a pull model where they will proac-

tively scour the web for new or updated information, or they could

try to establish a convention and a set of protocols enabling content

providers to push content of interest to the aggregators. Indeed, the

Harvest system [24], one of the earliest search services, adopted such

a push model. However, this approach did not succeed, and virtually

all content aggregators adopted the pull approach, with a few pro-

visos to allow content providers to exclude all or part of their content

from being crawled (the robots exclusion protocol) and to provide hints

about their content, its importance and its rate of change (the Sitemaps

protocol [110]).

There are several reasons why the push model did not become the

primary means of acquiring content for search engines and other content

aggregators: The fact that web servers are highly autonomous means

that the barrier of entry to becoming a content provider is quite low,

and the fact that the web protocols were at least initially extremely

simple lowered the barrier even further — in fact, this simplicity is

viewed by many as the reason why the web succeeded where earlier

hypertext systems had failed. Adding push protocols would have com-

plicated the set of web protocols and thus raised the barrier of entry for

content providers, while the pull model does not require any extra pro-

tocols. By the same token, the pull model lowers the barrier of entry for

content aggregators as well: Launching a crawler does not require any

a priori buy-in from content providers, and indeed there are over 1,500

operating crawlers [47], extending far beyond the systems employed by

the big search engines. Finally, the push model requires a trust relation-

ship between content provider and content aggregator, something that

is not given on the web at large — indeed, the relationship between



178 Introduction

content providers and search engines is characterized by both mutual

dependence and adversarial dynamics (see Section 6).

1.1 Challenges

The basic web crawling algorithm is simple: Given a set of seed Uni-

form Resource Locators (URLs), a crawler downloads all the web pages

addressed by the URLs, extracts the hyperlinks contained in the pages,

and iteratively downloads the web pages addressed by these hyperlinks.

Despite the apparent simplicity of this basic algorithm, web crawling

has many inherent challenges:

• Scale. The web is very large and continually evolving.

Crawlers that seek broad coverage and good freshness must

achieve extremely high throughput, which poses many diffi-

cult engineering problems. Modern search engine companies

employ thousands of computers and dozens of high-speed

network links.
• Content selection tradeoffs. Even the highest-throughput

crawlers do not purport to crawl the whole web, or keep up

with all the changes. Instead, crawling is performed selec-

tively and in a carefully controlled order. The goals are to

acquire high-value content quickly, ensure eventual coverage

of all reasonable content, and bypass low-quality, irrelevant,

redundant, and malicious content. The crawler must balance

competing objectives such as coverage and freshness, while

obeying constraints such as per-site rate limitations. A bal-

ance must also be struck between exploration of potentially

useful content, and exploitation of content already known to

be useful.
• Social obligations. Crawlers should be “good citizens” of

the web, i.e., not impose too much of a burden on the web

sites they crawl. In fact, without the right safety mecha-

nisms a high-throughput crawler can inadvertently carry out

a denial-of-service attack.
• Adversaries. Some content providers seek to inject use-

less or misleading content into the corpus assembled by



1.2 Outline 179

the crawler. Such behavior is often motivated by financial

incentives, for example (mis)directing traffic to commercial

web sites.

1.2 Outline

Web crawling is a many-faceted topic, and as with most interesting

topics it cannot be split into fully orthogonal subtopics. Bearing that

in mind, we structure the survey according to five relatively distinct

lines of work that occur in the literature:

• Building an efficient, robust and scalable crawler (Section 2).
• Selecting a traversal order of the web graph, assuming

content is well-behaved and is interconnected via HTML

hyperlinks (Section 4).
• Scheduling revisitation of previously crawled content (Sec-

tion 5).
• Avoiding problematic and undesirable content (Section 6).
• Crawling so-called “deep web” content, which must be

accessed via HTML forms rather than hyperlinks (Section 7).

Section 3 introduces the theoretical crawl ordering problem studied

in Sections 4 and 5, and describes structural and evolutionary proper-

ties of the web that influence crawl ordering. Section 8 gives a list of

open problems.



2

Crawler Architecture

This section first presents a chronology of web crawler development,

and then describes the general architecture and key design points of

modern scalable crawlers.

2.1 Chronology

Web crawlers are almost as old as the web itself. In the spring of 1993,

shortly after the launch of NCSA Mosaic, Matthew Gray implemented

the World Wide Web Wanderer [67]. The Wanderer was written in Perl

and ran on a single machine. It was used until 1996 to collect statistics

about the evolution of the web. Moreover, the pages crawled by the

Wanderer were compiled into an index (the “Wandex”), thus giving

rise to the first search engine on the web. In December 1993, three

more crawler-based Internet Search engines became available: Jump-

Station (implemented by Jonathan Fletcher; the design has not been

written up), the World Wide Web Worm [90], and the RBSE spider [57].

WebCrawler [108] joined the field in April 1994, and MOMspider [61]

was described the same year. This first generation of crawlers identified

some of the defining issues in web crawler design. For example, MOM-

180



2.1 Chronology 181

spider considered politeness policies: It limited the rate of requests

to each site, it allowed web sites to exclude themselves from purview

through the nascent robots exclusion protocol [83], and it provided a

“black-list” mechanism that allowed the crawl operator to exclude sites.

WebCrawler supported parallel downloading of web pages by structur-

ing the system into a central crawl manager and 15 separate download-

ing processes. However, the design of these early crawlers did not focus

on scalability, and several of them (RBSE spider and WebCrawler) used

general-purpose database management systems to store the state of the

crawl. Even the original Lycos crawler [89] ran on a single machine, was

written in Perl, and used Perl’s associative arrays (spilt onto disk using

the DBM database manager) to maintain the set of URLs to crawl.

The following few years saw the arrival of several commercial search

engines (Lycos, Infoseek, Excite, AltaVista, and HotBot), all of which

used crawlers to index tens of millions of pages; however, the design of

these crawlers remains undocumented.

Mike Burner’s description of the Internet Archive crawler [29] was

the first paper that focused on the challenges caused by the scale of the

web. The Internet Archive crawling system was designed to crawl on

the order of 100 million URLs. At this scale, it is no longer possible to

maintain all the required data in main memory. The solution proposed

by the IA paper was to crawl on a site-by-site basis, and to parti-

tion the data structures accordingly. The list of URLs to be crawled

was implemented as a disk-based queue per web site. To avoid adding

multiple instances of the same URL to the queue, the IA crawler main-

tained an in-memory Bloom filter [20] of all the site’s URLs discovered

so far. The crawl progressed by dequeuing a URL, downloading the

associated page, extracting all links, enqueuing freshly discovered on-

site links, writing all off-site links to disk, and iterating. Each crawling

process crawled 64 sites in parallel, using non-blocking input/output

(I/O) and a single thread of control. Occasionally, a batch process

would integrate the off-site link information into the various queues.

The IA design made it very easy to throttle requests to a given host,

thereby addressing politeness concerns, and DNS and robot exclusion

lookups for a given web site were amortized over all the site’s URLs

crawled in a single round. However, it is not clear whether the batch



182 Crawler Architecture

process of integrating off-site links into the per-site queues would scale

to substantially larger web crawls.

Brin and Page’s 1998 paper outlining the architecture of the first-

generation Google [25] system contains a short description of their

crawler. The original Google crawling system consisted of a single

URLserver process that maintained the state of the crawl, and around

four crawling processes that downloaded pages. Both URLserver and

crawlers were implemented in Python. The crawling process used asyn-

chronous I/O and would typically perform about 300 downloads in par-

allel. The peak download rate was about 100 pages per second, with an

average size of 6 KB per page. Brin and Page identified social aspects

of crawling (e.g., dealing with web masters’ complaints) as a major

challenge in operating a crawling system.

With the Mercator web crawler, Heydon and Najork presented a

“blueprint design” for web crawlers [75, 94]. Mercator was written

in Java, highly scalable, and easily extensible. The first version [75]

was non-distributed; a later distributed version [94] partitioned the

URL space over the crawlers according to host name, and avoided the

potential bottleneck of a centralized URL server. The second Mercator

paper gave statistics of a 17-day, four-machine crawl that covered

891 million pages. Mercator was used in a number of web mining

projects [27, 60, 71, 72, 95], and in 2001 replaced the first-generation

AltaVista crawler.

Shkapenyuk and Suel’s Polybot web crawler [111] represents another

“blueprint design.” Polybot is a distributed system, consisting of a

crawl manager process, multiple downloader processes, and a DNS

resolver process. The paper describes scalable data structures for the

URL frontier and the “seen-URL” set used to avoid crawling the same

URL multiple times; it also discusses techniques for ensuring polite-

ness without slowing down the crawl. Polybot was able to download

120 million pages over 18 days using four machines.

The IBM WebFountain crawler [56] represented another industrial-

strength design. The WebFountain crawler was fully distributed.

The three major components were multi-threaded crawling processes

(“Ants”), duplicate detection processes responsible for identifying

downloaded pages with near-duplicate content, and a central controller



2.1 Chronology 183

process responsible for assigning work to the Ants and for monitoring

the overall state of the system. WebFountain featured a very flexible

crawl scheduling mechanism that allowed URLs to be prioritized, main-

tained a politeness policy, and even allowed the policy to be changed

on the fly. It was designed from the ground up to support incremental

crawling, i.e., the process of recrawling pages regularly based on their

historical change rate. The WebFountain crawler was written in C++

and used MPI (the Message Passing Interface) to facilitate communi-

cation between the various processes. It was reportedly deployed on a

cluster of 48 crawling machines [68].

UbiCrawler [21] is another scalable distributed web crawler. It uses

consistent hashing to partition URLs according to their host component

across crawling machines, leading to graceful performance degradation

in the event of the failure of a crawling machine. UbiCrawler was able to

download about 10 million pages per day using five crawling machines.

UbiCrawler has been used for studies of properties of the African

web [22] and to compile several reference collections of web pages [118].

Recently, Yan et al. described IRLbot [84], a single-process web

crawler that is able to scale to extremely large web collections without

performance degradation. IRLbot features a “seen-URL” data struc-

ture that uses only a fixed amount of main memory, and whose perfor-

mance does not degrade as it grows. The paper describes a crawl that

ran over two months and downloaded about 6.4 billion web pages. In

addition, the authors address the issue of crawler traps (web sites with

a large, possibly infinite number of low-utility pages, see Section 6.2),

and propose ways to ameliorate the impact of such sites on the crawling

process.

Finally, there are a number of open-source crawlers, two of which

deserve special mention. Heritrix [78, 93] is the crawler used by the

Internet Archive. It is written in Java and highly componentized,

and its design is quite similar to that of Mercator. Heritrix is multi-

threaded, but not distributed, and as such suitable for conducting mod-

erately sized crawls. The Nutch crawler [62, 81] is written in Java as

well. It supports distributed operation and should therefore be suitable

for very large crawls; but as of the writing of [81] it has not been scaled

beyond 100 million pages.



184 Crawler Architecture

2.2 Architecture Overview

Figure 2.1 shows the high-level architecture of a prototypical dis-

tributed web crawler. The crawler consists of multiple processes run-

ning on different machines connected by a high-speed network. Each

crawling process consists of multiple worker threads, and each worker

thread performs repeated work cycles.

At the beginning of each work cycle, a worker obtains a URL from

the Frontier data structure, which dispenses URLs according to their

priority and to politeness policies. The worker thread then invokes the

HTTP fetcher. The fetcher first calls a DNS sub-module to resolve the

host component of the URL into the IP address of the corresponding

web server (using cached results of prior resolutions if possible), and

then connects to the web server, checks for any robots exclusion rules

(which typically are cached as well), and attempts to download the web

page.

If the download succeeds, the web page may or may not be stored

in a repository of harvested web pages (not shown). In either case, the

page is passed to the Link extractor, which parses the page’s HTML

content and extracts hyperlinks contained therein. The corresponding

URLs are then passed to a URL distributor, which assigns each URL

to a crawling process. This assignment is typically made by hashing

the URLs host component, its domain, or its IP address (the latter

requires additional DNS resolutions). Since most hyperlinks refer to

pages on the same web site, assignment to the local crawling process is

the common case.

Next, the URL passes through the Custom URL filter (e.g., to

exclude URLs belonging to “black-listed” sites, or URLs with particu-

lar file extensions that are not of interest) and into the Duplicate URL

eliminator, which maintains the set of all URLs discovered so far and

passes on only never-before-seen URLs. Finally, the URL prioritizer

selects a position for the URL in the Frontier, based on factors such as

estimated page importance or rate of change.1

1 Change rates play a role in incremental crawlers (Section 2.3.5), which route fetched URLs
back to the prioritizer and Frontier.



2.3 Key Design Points 185

Frontier

Duplicate URL

eliminator

Custom URL filter

Link extractor

URL prioritizer

HTTP fetcher

DNS resolver &

cache

URL distributor

Crawling process 1

Web servers

DNS servers

Host names

HTML pages

IP addresses

URLs

URLs

URLs

URLs

URLs

URLsURLs

URLs

Frontier

Duplicate URL

eliminator

Custom URL filter

Link extractor

URL prioritizer

HTTP fetcher

DNS resolver &

cache

URL distributor

Crawling process 2

Web servers

DNS servers

Host names

HTML pages

IP addresses

URLs

URLs

URLs

URLs

URLs

URLs

Fig. 2.1 Basic crawler architecture.

2.3 Key Design Points

Web crawlers download web pages by starting from one or more

seed URLs, downloading each of the associated pages, extracting the



186 Crawler Architecture

hyperlink URLs contained therein, and recursively downloading those

pages. Therefore, any web crawler needs to keep track both of the

URLs that are to be downloaded, as well as those that have already

been downloaded (to avoid unintentionally downloading the same page

repeatedly). The required state is a set of URLs, each associated with

a flag indicating whether the page has been downloaded. The oper-

ations that must be supported are: Adding a new URL, retrieving a

URL, marking a URL as downloaded, and testing whether the set con-

tains a URL. There are many alternative in-memory data structures

(e.g., trees or sorted lists) that support these operations. However, such

an implementation does not scale to web corpus sizes that exceed the

amount of memory available on a single machine.

To scale beyond this limitation, one could either maintain the data

structure (e.g., the tree or sorted list) on disk, or use an off-the-shelf

database management system. Either solution allows maintaining set

sizes that exceed main memory; however, the cost of accessing items in

the set (particularly for the purpose of set membership test) typically

involves a disk seek, making it a fairly expensive operation. To achieve

high performance, a more specialized approach is needed.

Virtually every modern web crawler splits the crawl state into two

major data structures: One data structure for maintaining the set of

URLs that have been discovered (whether downloaded or not), and

a second data structure for maintaining the set of URLs that have

yet to be downloaded. The first data structure (sometimes called the

“URL-seen test” or the “duplicated URL eliminator”) must support set

addition and set membership testing, while the second data structure

(usually called the frontier) must support adding URLs, and selecting

a URL to fetch next.

2.3.1 Frontier Data Structure and Politeness

A straightforward implementation of the frontier data structure is a

First-in-First-out (FIFO) queue. Such an implementation results in a

breadth-first traversal of the web graph. However, this simple approach

has drawbacks: Most hyperlinks on the web are “relative” (i.e., refer

to another page on the same web server). Therefore, a frontier realized



2.3 Key Design Points 187

as a FIFO queue contains long runs of URLs referring to pages on

the same web server, resulting in the crawler issuing many consecutive

HTTP requests to that server. A barrage of requests in short order

is considered “impolite,” and may be construed as a denial-of-service

attack on the web server. On the other hand, it would be wasteful for

the web crawler to space out requests to the same server without doing

other useful work in the meantime. This problem is compounded in a

multithreaded or distributed crawler that issues many HTTP requests

in parallel.

Most web crawlers obey a policy of not issuing multiple overlapping

requests to the same server. An easy way to realize this is to maintain a

mapping from web servers to crawling threads, e.g., by hashing the host

component of each URL.2 In this design, each crawling thread has a sep-

arate FIFO queue, and downloads only URLs obtained from that queue.

A more conservative politeness policy is to space out requests to

each web server according to that server’s capabilities. For example, a

crawler may have a policy to delay subsequent requests to a server by a

multiple (say 10×) of the time it took to download the last page from

that server. This policy ensures that the crawler consumes a bounded

fraction of the web server’s resources. It also means that in a given time

interval, fewer pages will be downloaded from slow or poorly connected

web servers than from fast, responsive web servers. In other words,

this crawling policy is biased toward well-provisioned web sites. Such a

policy is well-suited to the objectives of search engines, since large and

popular web sites tend also to be well-provisioned.

The Mercator web crawler implemented such an adaptive politeness

policy. It divided the frontier into two parts, a “front end” and a “back

end.” The front end consisted of a single queue Q, and URLs were

added to the frontier by enqueuing them into that queue. The back

2 To amortize hardware cost, many web servers use virtual hosting, meaning that multiple

symbolic host names resolve to the same IP address. Simply hashing the host component
of each URL to govern politeness has the potential to overload such web servers. A better
scheme is to resolve the URLs symbolic host name to an IP address and use a hash of that

address to assign URLs to a queue. The drawback of that approach is that the latency
of DNS resolution can be high (see Section 2.3.3), but fortunately there tends to be a

high amount of locality in the stream of discovered host names, thereby making caching
effective.



188 Crawler Architecture

end consisted of many separate queues; typically three times as many

queues as crawling threads. Each queue contained URLs belonging to a

single web server; a table T on the side maintained a mapping from web

servers to back-end queues. In addition, associated with each back-end

queue q was a time t at which the next URL from q may be processed.

These (q, t) pairs were organized into an in-memory priority queue, with

the pair with lowest t having the highest priority. Each crawling thread

obtained a URL to download by removing the highest-priority entry

(q, t) from the priority queue, waiting if necessary until time t had been

reached, dequeuing the next URL u from q, downloading it, and finally

reinserting the pair (q, tnow + k · x) into the priority queue, where tnow

is the current time, x is the amount of time it took to download u, and k

is a “politeness parameter”; typically 10. If dequeuing u from q left q

empty, the crawling thread would remove the mapping from host(u)

to q from T , repeatedly dequeue a URL u′ from Q and enqueue u′ into

the back-end queue identified by T (host(u′)), until it found a u′ such

that host(u′) was not contained in T . At this point, it would enqueue

u′ in q and update T to map host(u′) to q.

In addition to obeying politeness policies that govern the rate at

which pages are downloaded from a given web site, web crawlers may

also want to prioritize the URLs in the frontier. For example, it may

be desirable to prioritize pages according to their estimated usefulness

(based for example on their PageRank [101], the traffic they receive,

the reputation of the web site, or the rate at which the page has

been updated in the past). The page ordering question is discussed in

Section 4.

Assuming a mechanism for assigning crawl priorities to web pages, a

crawler can structure the frontier (or in the Mercator design described

above, the front-end queue) as a disk-based priority queue ordered by

usefulness. The standard implementation of a priority queue is a heap,

and insertions into a heap of n elements require log(n) element accesses,

each access potentially causing a disk seek, which would limit the data

structure to a few hundred insertions per second — far less than the

URL ingress required for high-performance crawling.

An alternative solution is to “discretize” priorities into a fixed num-

ber of priority levels (say 10 to 100 levels), and maintain a separate URL



2.3 Key Design Points 189

FIFO queue for each level. A URL is assigned a discrete priority level,

and inserted into the corresponding queue. To dequeue a URL, either

the highest-priority nonempty queue is chosen, or a randomized policy

biased toward higher-priority queues is employed.

2.3.2 URL Seen Test

As outlined above, the second major data structure in any modern

crawler keeps track of the set of URLs that have been previously dis-

covered and added to frontier. The purpose of this data structure is

to avoid adding multiple instances of the same URL to the frontier;

for this reason, it is sometimes called the URL-seen test (UST) or the

duplicate URL eliminator (DUE). In a simple batch crawling setting

in which pages are downloaded only once, the UST needs to support

insertion and set membership testing; in a continuous crawling setting

in which pages are periodically re-downloaded (see Section 2.3.5), it

must also support deletion, in order to cope with URLs that no longer

point to a valid page.

There are multiple straightforward in-memory implementations of

a UST, e.g., a hash table or Bloom filter [20]. As mentioned above, in-

memory implementations do not scale to arbitrarily large web corpora;

however, they scale much further than in-memory implementations of

the frontier, since each URL can be compressed to a much smaller

token (e.g., a 10-byte hash value). Commercial search engines employ

distributed crawlers (Section 2.3.4), and a hash table realizing the UST

can be partitioned across the machines in the crawling cluster, further

increasing the limit of how far such an in-memory implementation can

be scaled out.

If memory is at a premium, the state of the UST must reside on

disk. In a disk-based hash table, each lookup requires a disk seek,

severely limiting the throughput. Caching popular URLs can increase

the throughput by about an order of magnitude [27] to a few thousand

lookups per second, but given that the average web page contains on

the order of a hundred links and that each link needs to be tested for

novelty, the crawling rate would still be limited to tens of pages per

second under such an implementation.



190 Crawler Architecture

While the latency of disk seeks is poor (a few hundred seeks per

second), the bandwidth of disk reads and writes is quite high (on the

order of 50–100 MB per second in modern disks). So, implementations

performing random file accesses perform poorly, but those that perform

streaming sequential reads or writes can achieve reasonable through-

put. The Mercator crawler leveraged this observation by aggregating

many set lookup and insertion operations into a single large batch, and

processing this batch by sequentially reading a set of sorted URL hashes

from disk and writing them (plus the hashes of previously undiscovered

URLs) out to a new file [94].

This approach implies that the set membership is delayed: We only

know whether a URL is new after the batch containing the URL has

been merged with the disk file. Therefore, we cannot decide whether

to add the URL to the frontier until the merge occurs, i.e., we need

to retain all the URLs in a batch, not just their hashes. However, it is

possible to store these URLs temporarily on disk and read them back

at the conclusion of the merge (again using purely sequential I/O),

once it is known that they had not previously been encountered and

should thus be added to the frontier. Adding URLs to the frontier in

a delayed fashion also means that there is a lower bound on how soon

they can be crawled; however, given that the frontier is usually far

larger than a DUE batch, this delay is imperceptible except for the

most high-priority URLs.

The IRLbot crawler [84] uses a refinement of the Mercator scheme,

where the batch of URLs arriving at the DUE is also written to disk,

distributed over multiple files keyed by the prefix of each hash. Once

the size of the largest file exceeds a certain threshold, the files that

together hold the batch are read back into memory one by one and

merge-sorted into the main URL hash file on disk. At the conclusion

of the merge, URLs are forwarded to the frontier as in the Mercator

scheme. Because IRLbot stores the batch on disk, the size of a single

batch can be much larger than Mercator’s in-memory batches, so the

cost of the merge-sort with the main URL hash file is amortized over

a much larger set of URLs.

In the Mercator scheme and its IRLbot variant, merging a batch of

URLs into the disk-based hash file involves reading the entire old hash



2.3 Key Design Points 191

file and writing out an updated version. Hence, the time requirement

is proportional to the number of discovered URLs. A modification of

this design is to store the URL hashes on disk in sorted order as before,

but sparsely packed rather than densely packed. The k highest-order

bits of a hash determine the disk block where this hash resides (if it is

present). Merging a batch into the disk file is done in place, by reading

a block for which there are hashes in the batch, checking which hashes

are not present in that block, and writing the updated block back to

disk. Thus, the time requirement for merging a batch is proportional to

the size of the batch, not the number of discovered URLs (albeit with

high constant due to disk seeks resulting from skipping disk blocks).

Once any block in the file fills up completely, the disk file is rewritten

to be twice as large, and each block contains hashes that now share

their k + 1 highest-order bits.

2.3.3 Auxiliary Data Structures

In addition to the two main data structures discussed in Sections 2.3.1

and 2.3.2 — the frontier and the UST/DUE — web crawlers maintain

various auxiliary data structures. We discuss two: The robots exclusion

rule cache and the DNS cache.

Web crawlers are supposed to adhere to the Robots Exclusion Pro-

tocol [83], a convention that allows a web site administrator to bar web

crawlers from crawling their site, or some pages within the site. This is

done by providing a file at URL /robots.txt containing rules that spec-

ify which pages the crawler is allowed to download. Before attempt-

ing to crawl a site, a crawler should check whether the site supplies

a /robots.txt file, and if so, adhere to its rules. Of course, download-

ing this file constitutes crawling activity in itself. To avoid repeatedly

requesting /robots.txt, crawlers typically cache the results of previous

requests of that file. To bound the size of that cache, entries must

be discarded through some cache eviction policy (e.g., least-recently

used); additionally, web servers can specify an expiration time for their

/robots.txt file (via the HTTP Expires header), and cache entries should

be discarded accordingly.

URLs contain a host component (e.g., www.yahoo.com), which is

“resolved” using the Domain Name Service (DNS), a protocol that



192 Crawler Architecture

exposes a globally distributed mapping from symbolic host names to IP

addresses. DNS requests can take quite a long time due to the request-

forwarding nature of the protocol. Therefore, crawlers often maintain

their own DNS caches. As with the robots exclusion rule cache, entries

are expired according to both a standard eviction policy (such as least-

recently used), and to expiration directives.

2.3.4 Distributed Crawling

Web crawlers can be distributed over multiple machines to increase

their throughput. This is done by partitioning the URL space, such

that each crawler machine or node is responsible for a subset of the

URLs on the web. The URL space is best partitioned across web site

boundaries [40] (where a “web site” may refer to all URLs with the same

symbolic host name, same domain, or same IP address). Partitioning

the URL space across site boundaries makes it easy to obey politeness

policies, since each crawling process can schedule downloads without

having to communicate with other crawler nodes. Moreover, all the

major data structures can easily be partitioned across site boundaries,

i.e., the frontier, the DUE, and the DNS and robots exclusion caches

of each node contain URL, robots exclusion rules, and name-to-address

mappings associated with the sites assigned to that node, and nothing

else.

Crawling processes download web pages and extract URLs, and

thanks to the prevalence of relative links on the web, they will be them-

selves responsible for the large majority of extracted URLs. When a

process extracts a URL u that falls under the responsibility of another

crawler node, it forwards u to that node. Forwarding of URLs can

be done through peer-to-peer TCP connections [94], a shared file sys-

tem [70], or a central coordination process [25, 111]. The amount of

communication with other crawler nodes can be reduced by maintain-

ing a cache of popular URLs, used to avoid repeat forwardings [27].

Finally, a variant of distributed web crawling is peer-to-peer crawl-

ing [10, 87, 100, 112, 121], which spreads crawling over a loosely col-

laborating set of crawler nodes. Peer-to-peer crawlers typically employ

some form of distributed hash table scheme to assign URLs to crawler



2.3 Key Design Points 193

nodes, enabling them to cope with sporadic arrival and departure of

crawling nodes.

2.3.5 Incremental Crawling

Web crawlers can be used to assemble one or more static snapshots of

a web corpus (batch crawling), or to perform incremental or continu-

ous crawling, where the resources of the crawler are divided between

downloading newly discovered pages and re-downloading previously

crawled pages. Efficient incremental crawling requires a few changes

to the major data structures of the crawler. First, as mentioned in

Section 2.3.2, the DUE should support the deletion of URLs that are

no longer valid (e.g., that result in a 404 HTTP return code). Second,

URLs are retrieved from the frontier and downloaded as in batch crawl-

ing, but they are subsequently reentered into the frontier. If the frontier

allows URLs to be prioritized, the priority of a previously downloaded

URL should be dependent on a model of the page’s temporal behavior

based on past observations (see Section 5). This functionality is best

facilitated by augmenting URLs in the frontier with additional infor-

mation, in particular previous priorities and compact sketches of their

previous content. This extra information allows the crawler to compare

the sketch of the just-downloaded page to that of the previous version,

for example raising the priority if the page has changed and lowering

it if it has not. In addition to content evolution, other factors such as

page quality are also often taken into account; indeed there are many

fast-changing “spam” web pages.



3

Crawl Ordering Problem

Aside from the intra-site politeness considerations discussed in Sec-

tion 2, a crawler is free to visit URLs in any order. The crawl order

is extremely significant, because for the purpose of crawling the web

can be considered infinite — due to the growth rate of new content,

and especially due to dynamically generated content [8]. Indeed, despite

their impressive capacity, modern commercial search engines only index

(and likely only crawl) a fraction of discoverable web pages [11]. The

crawler ordering question is even more crucial for the countless smaller-

scale crawlers that perform scoped crawling of targeted subsets of the

web.

Sections 3–5 survey work on selecting a good crawler order, with a

focus on two basic considerations:

• Coverage. The fraction of desired pages that the crawler

acquires successfully.
• Freshness. The degree to which the acquired page snapshots

remain up-to-date, relative to the current “live” web copies.

Issues related to redundant, malicious or misleading content are covered

in Section 6. Generally speaking, techniques to avoid unwanted content

194



3.1 Model 195

can be incorporated into the basic crawl ordering approaches without

much difficulty.

3.1 Model

Most work on crawl ordering abstracts away the architectural details

of a crawler (Section 2), and assumes that URLs in the frontier

data structure can be reordered freely. The resulting simplified crawl

ordering model is depicted in Figure 3.1. At a given point in time,

some historical crawl order has already been executed (P1,P2,P3,P4,P5

in the diagram), and some future crawl order has been planned

(P6,P7,P4,P8, . . .).
1

In the model, all pages require the same amount of time to down-

load; the (constant) rate of page downloading is called the crawl rate,

typically measured in pages/second. (Section 2 discussed how to max-

imize the crawl rate; here it is assumed to be fixed.) The crawl rate

is not relevant to batch crawl ordering methods, but it is a key factor

when scheduling page revisitations in incremental crawling.

Fig. 3.1 Crawl ordering model.

1 Some approaches treat the crawl ordering problem hierarchically, e.g., select a visitation
order for web sites, and within each site select a page visitation order. This approach

helps mitigate the complexity of managing a crawl ordering policy, and is well aligned
with policies that rely primarily on site-level metrics such as site-level PageRank to drive
crawl ordering decisions. Many of the insights about page-level crawl ordering also apply
at the site level.



196 Crawl Ordering Problem

Pages downloaded by the crawler are stored in a repository. The

future crawl order is determined, at least in part, by analyzing the

repository. For example, one simple policy mentioned earlier, breadth-

first search, extracts hyperlinks from pages entering the repository,

identifies linked-to pages that are not already part of the (historical

or planned) crawl order, and adds them to the end of the planned

crawl order.

The content of a web page is subject to change over time, and it

is sometimes desirable to re-download a page that has already been

downloaded, to obtain a more recent snapshot of its content. As men-

tioned in Section 2.3.5, two approaches exist for managing repeated

downloads:

• Batch crawling. The crawl order does not contain duplicate

occurrences of any page, but the entire crawling process is

periodically halted and restarted as a way to obtain more

recent snapshots of previously crawled pages. Information

gleaned from previous crawl iterations (e.g., page importance

score estimates) may be fed to subsequent ones.
• Incremental crawling. Pages may appear multiple times

in the crawl order, and crawling is a continuous process that

conceptually never terminates.

It is believed that most modern commercial crawlers perform incremen-

tal crawling, which is more powerful because it allows re-visitation of

pages at different rates. (A detailed comparison between incremental

and batch crawling is made by Cho and Garćıa-Molina [39].)

3.1.1 Limitations

This model has led to a good deal of research with practical implica-

tions. However, as with all models, it simplifies reality. For one thing, as

discussed in Section 2, a large-scale crawler maintains its frontier data

structure on disk, which limits opportunities for reordering. Generally

speaking, the approach of maintaining a prioritized ensemble of FIFO

queues (see Section 2.3.1) can be used to approximate a desired crawl

order. We revisit this issue in Sections 4.3 and 5.3.



3.2 Web Characteristics 197

Other real-world considerations that fall outside the model include:

• Some pages (or even versions of a page) take longer to down-

load than others, due to differences in size and network

latency.
• Crawlers take special care to space out downloads of pages

from the same server, to obey politeness constraints, see Sec-

tion 2.3.1. Crawl ordering policies that assume a single crawl

rate constraint can, at least in principle, be applied on a per-

server basis, i.e., run n independent copies of the policy for

n servers.
• As described in Section 2, modern commercial crawlers uti-

lize many simultaneous page downloader threads, running

on many independent machines. Hence rather than a single

totally ordered list of pages to download, it is more accurate

to think of a set of parallel lists, encoding a partial order.
• Special care must be taken to avoid crawling redundant and

malicious content; we treat these issues in Section 6.
• If the page repository runs out of space, and expanding it

is not considered worthwhile, is becomes necessary to retire

some of the pages stored there (although it may make sense to

retain some metadata about the page, to avoid recrawling it).

We are not aware of any scholarly work on how to select pages

for retirement.

3.2 Web Characteristics

Before proceeding, we describe some structural and evolutionary prop-

erties of the web that are relevant to the crawl ordering question. The

findings presented here are drawn from studies that used data sets of

widely varying size and scope, taken at different dates over the span of

a decade, and analyzed via a wide array of methods. Hence, caution is

warranted in their interpretation.

3.2.1 Static Characteristics

Several studies of the structure of the web graph, in which pages

are encoded as vertices and hyperlinks as directed edges, have been



198 Crawl Ordering Problem

conducted. One notable study is by Broder et al. [26], which uncovered

a “bowtie” structure consisting of a central strongly connected com-

ponent (the core), a component that can reach the core but cannot

be reached from the core, and a component that can be reached from

the core but cannot reach the core. (In addition to these three main

components there are a number of small, irregular structures such as

disconnected components and long “tendrils.”)

Hence there exist many ordered pairs of pages (P1,P2) such that

there is no way to reach P2 by starting at P1 and repeatedly following

hyperlinks. Even in cases where P2 is reachable from P1, the distance

can vary greatly, and in many cases hundreds of links must be traversed.

The implications for crawling are: (1) one cannot simply crawl to depth

N , for a reasonable value of N like N = 20, and be assured of covering

the entire web graph; (2) crawling “seeds” (the pages at which a crawler

commences) should be selected carefully, and multiple seeds may be

necessary to ensure good coverage.

In an earlier study, Broder et al. [28] showed that there is an abun-

dance of near-duplicate content of the web. Using a corpus of 30 million

web pages collected by the AltaVista crawler, they used the shingling

algorithm to cluster the corpus into groups of similar pages, and found

that 29% of the pages were more than 50% similar to other pages in

the corpus, and 11% of the pages were exact duplicates of other pages.

Sources of near-duplication include mirroring of sites (or portions of

sites) and URL synonymy, see Section 6.1.

Chang et al. [35] studied the “deep web,” i.e., web sites whose con-

tent is not reachable via hyperlinks and instead can only be retrieved by

submitting HTML forms. The findings include: (1) there are over one

million deep web sites; (2) more deep web sites have structured (multi-

field) query interfaces than unstructured (single-field) ones; and (3)

most query interfaces are located within a few links of the root of a web

site, and are thus easy to find by shallow crawling from the root page.

3.2.2 Temporal Characteristics

One of the objectives of crawling is to maintain freshness of the

crawled corpus. Hence it is important to understand the temporal



3.2 Web Characteristics 199

characteristics of the web, both in terms of site-level evolution (the

appearance and disappearance of pages on a site) and page-level evo-

lution (changing content within a page).

3.2.2.1 Site-Level Evolution

Dasgupta et al. [48] and Ntoulas et al. [96] studied creation and retire-

ment of pages and links inside a number of web sites, and found the

following characteristics (these represent averages across many sites):

• New pages are created at a rate of 8% per week.
• Pages are retired at a rapid pace, such that during the course

of one year 80% of pages disappear.
• New links are created at the rate of 25% per week, which is

significantly faster than the rate of new page creation.
• Links are retired at about the same pace as pages, with 80%

disappearing in the span of a year.
• It is possible to discover 90% of new pages by monitoring

links spawned from a small, well-chosen set of old pages (for

most sites, five or fewer pages suffice, although for some sites

hundreds of pages must be monitored for this purpose). How-

ever, discovering the remaining 10% requires substantially

more effort.

3.2.2.2 Page-Level Evolution

Some key findings about the frequency with which an individual web

page undergoes a change are:

• Page change events are governed by a Poisson process, which

means that changes occur randomly and independently, at

least in the case of pages that change less frequently than

once a day [39].2

• Page change frequencies span multiple orders of magnitude

(sub-hourly, hourly, daily, weekly, monthly, annually), and

each order of magnitude includes a substantial fraction of

2 A Poisson change model was originally postulated by Coffman et al. [46].



200 Crawl Ordering Problem

pages on the web [2, 39]. This finding motivates the study of

non-uniform page revisitation schedules.
• Change frequency is correlated with visitation frequency,

URL depth, domain and topic [2], as well as page length [60].
• A page’s change frequency tends to remain stationary over

time, such that past change frequency is a fairly good pre-

dictor of future change frequency [60].

Unfortunately, it appears that there is no simple relationship

between the frequency with which a page changes and the cumulative

amount of content that changes over time. As one would expect, pages

with moderate change frequency tend to exhibit a higher cumulative

amount of changed content than pages with a low change frequency.

However, pages with high change frequency tend to exhibit less cumula-

tive change than pages with moderate change frequency. On the encour-

aging side, the amount of content that changed on a page in the past

is a fairly good predictor of the amount of content that will change in

the future (although the degree of predictability varies from web site

to web site) [60, 96].

Many changes are confined to a small, contiguous region of a web

page [60, 85], and/or only affect transient words that do not character-

ize the core, time-invariant theme of the page [2]. Much of the “new”

content added to web pages is actually taken from other pages [96].

The temporal behavior of (regions of) web pages can be divided into

three categories: Static (no changes), churn (new content supplants old

content, e.g., quote of the day), and scroll (new content is appended to

old content, e.g., blog entries). Simple generative models for the three

categories collectively explain nearly all observed temporal web page

behavior [99].

Most web pages include at least some static content, resulting in

an upper bound on the divergence between an old snapshot of a page

and the live copy. The shape of the curve leading to the upper bound

depends on the mixture of churn and scroll content, and the rates

of churning and scrolling. One simple way to characterize a page is

with a pair of numbers: (1) the divergence upper bound (i.e., the

amount of non-static content), under some divergence measure such



3.2 Web Characteristics 201

T
ec

h
n
iq

u
e

O
b
je

ct
iv

es
F
ac

to
rs

co
n
si

d
er

ed

C
o
v
e
ra

g
e

F
re

sh
n
e
ss

Im
p
o
rt

a
n
ce

R
e
le

v
a
n
ce

D
y
n
a
m

ic
it
y

B
re

ad
th

-fi
rs

t
se

ar
ch

[4
3
,
95

,
10

8]
√

P
ri

or
it

iz
e

b
y

in
d
eg

re
e

[4
3]

√
√

P
ri

or
it

iz
e

b
y

P
ag

eR
an

k
[4

3,
45

]
√

√

P
ri

or
it

iz
e

b
y

si
te

si
ze

[9
]

√
√

P
ri

or
it

iz
e

b
y

sp
aw

n
in

g
ra

te
[4

8]
√

√

P
ri

or
it

iz
e

b
y

se
ar

ch
im

p
ac

t
[1

04
]

√
√

√

S
co

p
ed

cr
aw

li
n
g

(S
ec

ti
on

4.
2)

√
√

M
in

im
iz

e
ob

so
le

sc
en

ce
[4

1,
46

]
√

√
√

M
in

im
iz

e
ag

e
[4

1]
√

√
√

M
in

im
iz

e
in

co
rr

ec
t

co
n
te

n
t

[9
9]

√
√

√

M
in

im
iz

e
em

b
ar

ra
ss

m
en

t
[1

15
]

√
√

√
√

M
ax

im
iz

e
se

ar
ch

im
p
ac

t
[1

03
]

√
√

√
√

U
p
d
a
te

ca
p
tu

re
(S

ec
ti

o
n

5.
2)

√
√

√

W
eb

F
o
u
n
ta

in
[5

6]
√

√
√

O
P

IC
[1

]
√

√
√

F
ig

.
3
.2

T
a
x
o
n
o
m

y
o
f
cr

a
w

l
o
rd

er
in

g
te

ch
n
iq

u
es

.



202 Crawl Ordering Problem

as shingle [28] or word difference; and (2) the amount of time it takes

to reach the upper bound (i.e., the time taken for all non-static content

to change) [2].

3.3 Taxonomy of Crawl Ordering Policies

Figure 3.2 presents a high-level taxonomy of published crawl ordering

techniques. The first group of techniques focuses exclusively on order-

ing pages for first-time downloading, which affects coverage. These can

be applied either in the batch crawling scenario, or in the incremen-

tal crawling scenario in conjunction with a separate policy governing

re-downloading of pages to maintain freshness, which is the focus of

the second group of techniques. Techniques in the third group con-

sider the combined problem of interleaving first-time downloads with

re-downloads, to balance coverage and freshness.

As reflected in Figure 3.2, crawl ordering decisions tend to be based

on some combination of the following factors: (1) importance of a page

or site, relative to others; (2) relevance of a page or site to the pur-

pose served by the crawl; and (3) dynamicity, or how the content of a

page/site tends to change over time.

Some crawl ordering techniques are broader than others in terms

of which factors they consider and which objectives they target. Ones

that focus narrowly on a specific aspect of crawling typically aim for a

“better” solution with respect to that aspect, compared with broader

“all-in-one” techniques. On the other hand, to be usable they may need

to be extended or combined with other techniques. In some cases a

straightforward extension exists (e.g., add importance weights to an

importance-agnostic formula for scheduling revisitations), but often

not. There is no published work on the best way to combine multiple

specialized techniques into a comprehensive crawl ordering approach

that does well across the board.

The next two chapters describe the techniques summarized in Fig-

ure 3.2, starting with ones geared toward batch crawling (Section 4),

and then moving to incremental crawl ordering techniques (Section 5).



4

Batch Crawl Ordering

A batch crawler traverses links outward from an initial seed set of URLs.

The seed set may be selected algorithmically, or by hand, based on

criteria such as importance, outdegree, or other structural features of

the web graph [120]. A common, simple approach is to use the root

page of a web directory site such as OpenDirectory, which links to

many important sites across a broad range of topics. After the seed set

has been visited and links have been extracted from the seed set pages,

the crawl ordering policy takes over.

The goal of the crawl ordering policy is to maximize the weighted

coverage (WC) achieved over time, given a fixed crawl rate. WC is

defined as:

WC(t) =
∑

p∈C(t)

w(p),

where t denotes the time elapsed since the crawl began, C(t) denotes the

set of pages crawled up to time t (under the fixed crawl rate assumption,

|C(t)| ∝ t), and w(p) denotes a numeric weight associated with page p.

The weight function w(p) is chosen to reflect the purpose of the crawl.

For example, if the purpose is to crawl pages about helicopters, one sets

w(p) = 1 for pages about helicopters, and w(p) = 0 for all other pages.

203



204 Batch Crawl Ordering

Fig. 4.1 Weighted coverage (WC) as a function of time elapsed (t) since the beginning of a

batch crawl.

Figure 4.1 shows some hypothetical WC curves. Typically, w(p) ≥ 0,

and hence WC(t) is monotonic in t. Under a random crawl ordering pol-

icy, WC(t) is roughly linear in t; this line serves as a baseline upon which

other policies strive to improve. An omniscient policy, which downloads

pages in descending order of w(p) yields a theoretical upper-bound

curve. (For the helicopter example, the omniscient policy downloads

all helicopter pages first, thereby achieving maximal WC before the

end of the crawl.) Policies A and B fall in-between the random and

omniscient cases, with A performing better in the early stages of the

crawl, but B performing better toward the end. The choice between A

and B depends on how long the crawl is allowed to run before being

stopped (and possibly re-started to bring in a fresh batch of pages),

and to what use, if any, pages obtained early in the crawl are put while

the crawl is still in flight.

The above framework can be applied to comprehensive batch crawl-

ing, in which the goal is to achieve broad coverage of all types of con-

tent, as well as to scoped batch crawling, where the crawler restricts its

attention to a relatively narrow slice of the web (e.g., pages about heli-

copters). This chapter examines the two scenarios in turn, focusing ini-

tially on crawl order effectiveness, with implementation and efficiency

questions covered at the end.

4.1 Comprehensive Crawling

When the goal is to cover high-quality content of all varieties, a

popular choice of weight function is w(p) = PR(p), where PR(p) is



4.1 Comprehensive Crawling 205

p’s importance score as measured by PageRank [101].1 Variations on

PageRank used in the crawling context include: Only counting external

links, i.e., ones that go between two web sites (Najork and Wiener [95]

discuss some tradeoffs involved in counting all links versus only exter-

nal links); biasing the PageRank random jumps to go to a trusted set of

pages believed not to engage in spamming (see Cho and Schonfeld [45]

for discussion); or omitting random jumps entirely, as done by Abite-

boul et al. [1].

In view of maximizing coverage weighted by PageRank or some

variant, three main types of crawl ordering policies have been examined

in the literature. In increasing order of complexity, they are:

• Breadth-first search [108]. Pages are downloaded in the

order in which they are first discovered, where discovery

occurs via extracting all links from each page immediately

after it is downloaded. Breadth-first crawling is appealing

due to its simplicity, and it also affords an interesting cov-

erage guarantee: In the case of PageRank that is biased to

a small trusted page set T , a breadth-first crawl of depth d

using T as its seed set achieves WC ≥ 1 − αd+1 [45], where α

is the PageRank damping parameter.
• Prioritize by indegree [43]. The page with the highest

number of incoming hyperlinks from previously downloaded

pages, is downloaded next. Indegree is sometimes used as a

low-complexity stand-in for PageRank, and is hence a nat-

ural candidate for crawl ordering under a PageRank-based

objective.
• Prioritize by PageRank (variant/estimate) [1, 43, 45].

Pages are downloaded in descending order of PageRank

(or some variant), as estimated based on the pages and links

acquired so far by the crawler. Straightforward application

1 Although this cumulative PageRank measure has been used extensively in the literature,
Boldi et al. [23] caution that absolute PageRank scores may not be especially meaningful,
and contend that PageRank should be viewed as a way to establish relative page order-
ings. Moreover, they show that biasing a crawl toward pages with high PageRank in the
crawled subgraph leads to subgraphs whose PageRank ordering differs substantially from
the PageRank-induced ordering of the same pages in the full graph.



206 Batch Crawl Ordering

of this method involves recomputing PageRank scores after

each download, or updating the PageRank scores incremen-

tally [38]. Another option is to recompute PageRank scores

only periodically, and rely on an approximation scheme

between recomputations. Lastly, Abiteboul et al. [1] gave an

efficient online method of estimating a variant of PageRank

that does not include random jumps, designed for use in con-

junction with a crawler.

The three published empirical studies that evaluate the above poli-

cies over real web data are listed in Figure 4.2 (Najork and Wiener [95]

evaluated only breadth-first search). Under the objective of crawling

high-PageRank pages early (w(p) = PR(p)), the main findings from

these studies are the following:

• Starting from high-PageRank seeds, breadth-first crawling

performs well early in the crawl (low t), but not as well as

the other policies later in the crawl (medium to high t).
• Perhaps unsurprisingly, prioritization by PageRank performs

well throughout the entire crawl. The shortcut of only recom-

puting PageRank periodically leads to poor performance, but

the online approximation scheme by Abiteboul et al. [1] per-

forms well. Furthermore, in the context of repeated batch

crawls, it is beneficial to use PageRank values from previous

iterations to drive the current iteration.
• There is no consensus on prioritization by indegree: One

study (Cho et al. [43]) found that it worked fairly well (almost

as well as prioritization by PageRank), whereas another

study (Baeza-Yates et al. [9]) found that it performed very

STUDY DATA SET DATA SIZE PUB. YEAR

Cho et al. [43] Stanford web 105 1998
Najork and Wiener [95] general web 108 2001
Baeza-Yates et al. [9] Chile and Greece 106 2005

Fig. 4.2 Empirical studies of batch crawl ordering policies.



4.1 Comprehensive Crawling 207

poorly. The reason given by Baeza-Yates et al. [9] for poor

performance is that it is overly greedy in going after high-

indegree pages, and therefore it takes a long time to find

pages that have high indegree and PageRank yet are only

discoverable via low-indegree pages. The two studies are over

different web collections that differ in size by an order of mag-

nitude, and are seven years apart in time.

In addition to the aforementioned results, Baeza-Yates et al. [9]

proposed a crawl policy that gives priority to sites containing a large

number of discovered but uncrawled URLs. According to their empirical

study, which imposed per-site politeness constraints, toward the end of

the crawl (high t) the proposed policy outperforms policies based on

breadth-first search, indegree, and PageRank. The reason is that it

avoids the problem of being left with a few very large sites at the end,

which can cause a politeness bottleneck.

Baeza-Yates and Castillo [8] observed that although the web graph

is effectively infinite, most user browsing activity is concentrated within

a small distance of the root page of each web site. Arguably, a crawler

should concentrate its activities there, and avoid exploring too deeply

into any one site.

4.1.1 Search Relevance as the Crawling Objective

Fetterly et al. [58] and Pandey and Olston [104] argued that when the

purpose of crawling is to supply content to a search engine, PageRank-

weighted coverage may not be the most appropriate objective. Accord-

ing to the argument, it instead makes sense to crawl pages that would

be viewed or clicked by search engine users, if present in the search

index. For example, one may set out to crawl all pages that, if indexed,

would appear in the top ten results of likely queries. Even if PageRank

is one of the factors used to rank query results, the top result for query

Q1 may have lower PageRank than the eleventh result for some other

query Q2, especially if Q2 pertains to a more established topic.

Fetterly et al. [58] evaluated four crawl ordering policies (breadth-

first; prioritize by indegree; prioritize by trans-domain indegree;



208 Batch Crawl Ordering

prioritize by PageRank) under two relevance metrics:

• MaxNDCG: The total Normalized Distributed Cumulative

Gain (NDCG) [79] score of a set of queries evaluated over the

crawled pages, assuming optimal ranking.
• Click count: The total number of clicks the crawled pages

attracted via a commercial search engine in some time period.

The main findings were that prioritization by PageRank is the most

reliable and effective method on these metrics, and that imposing per-

domain page limits boosts effectiveness.

Pandey and Olston [104] proposed a technique for explicitly ordering

pages by expected relevance impact, under the objective of maximizing

coverage weighted by the number of times a page appears among the

top N results of a user query. The relatively high computational over-

head of the technique is mitigated by concentrating on queries whose

results are likely to be improved by crawling additional pages (deemed

needy queries). Relevance of frontier pages to needy queries is estimated

from cues found in URLs and referring anchortext, as first proposed in

the context of scoped crawling [43, 74, 108], discussed next.

4.2 Scoped Crawling

A scoped crawler strives to limit crawling activities to pages that fall

within a particular category or scope, thereby acquiring in-scope con-

tent much faster and more cheaply than via a comprehensive crawl.

Scope may be defined according to topic (e.g., pages about aviation),

geography (e.g., pages about locations in and around Oldenburg, Ger-

many [6]), format (e.g., images and multimedia), genre (e.g., course

syllabi [51]), language (e.g., pages in Portuguese [65]), or other aspects.

(Broadly speaking, page importance, which is the primary crawl order-

ing criterion discussed in Section 4.1, can also be thought of as a form

of scope.)

Usage scenarios for scoped crawling include mining tasks that call

for crawling a particular type of content (e.g., images of animals), per-

sonalized search engines that focus on topics of interest to a partic-

ular user (e.g., aviation and gardening), and search engines for the



4.2 Scoped Crawling 209

“deep web” that use a surface-web crawler to locate gateways to deep-

web content (e.g., HTML form interfaces). In another scenario, one sets

out to crawl the full web by deploying many small-scale crawlers, each

of which is responsible for a different slice of the web — this approach

permits specialization to different types of content, and also facilitates

loosely coupled distributed crawling (Section 2.3.4).

As with comprehensive crawling (Section 4.1), the mathematical

objective typically associated with scoped crawling is maximization of

weighted coverage WC(t) =
∑

p∈C(t) w(p). In scoped crawling, the role

of the weight function w(p) is to reflect the degree to which page p falls

within the intended scope. In the simplest case, w(p) ∈ {0,1}, where 0

denotes that p is outside the scope and 1 denotes that p is in-scope.

Hence weighted coverage measures the fraction of crawled pages that

are in-scope, analogous to the precision metric used in information

retrieval.

Typically the in-scope pages form a finite set (whereas the full web is

often treated as infinite, as mentioned above). Hence it makes sense to

measure recall in addition to precision. Two recall-oriented evaluation

techniques have been proposed: (1) designate a few representative in-

scope pages by hand, and measure what fraction of them are discovered

by the crawler [92]; (2) measure the overlap among independent crawls

initiated from different seeds, to see whether they converge on the same

set of pages [34].

Topical crawling (also known as “focused crawling”), in which in-

scope pages are ones that are relevant to a particular topic or set of

topics, is by far the most extensively studied form of scoped crawling.

Work on other forms of scope — e.g., pages with form interfaces [14],

and pages within a geographical scope [6, 63] — tends to use similar

methods to the ones used for topical crawling. Hence we primarily

discuss topical crawling from this point forward.

4.2.1 Topical Crawling

The basic observation exploited by topical crawlers is that relevant

pages tend to link to other relevant pages, either directly or via short

chains of links. (This feature of the web has been verified empirically



210 Batch Crawl Ordering

in many studies, including Chakrabarti et al. [34] and Cho et al. [43].)

The first crawl ordering technique to exploit this observation was fish

search [53]. The fish search crawler categorized each crawled page p as

either relevant or irrelevant (a binary categorization), and explored the

neighborhood of each relevant page up to depth d looking for additional

relevant pages.

A second generation of topical crawlers [43, 74, 108] explored the

neighborhoods of relevant pages in a non-uniform fashion, opting to

traverse the most promising links first. The link traversal order was

governed by individual relevance estimates assigned to each linked-to

page (a continuous relevance metric is used, rather than a binary one).

If a crawled page p links to an uncrawled page q, the relevance estimate

for q is computed via analysis of the text surrounding p’s link to q (i.e.,

the anchortext and text near the anchortext2), as well as q’s URL.

In one variant, relevance estimates are smoothed by associating some

portion of p’s relevance score (and perhaps also the relevance scores

of pages linking to p, and so on in a recursive fashion), with q. The

motivation for smoothing the relevance scores is to permit discovery of

pages that are relevant yet lack indicative anchortext or URLs.

A third-generation approach based on machine learning and link

structure analysis was introduced by Chakrabarti et al. [33, 34]. The

approach leverages pre-existing topic taxonomies such as the Open

Directory and Yahoo!’s web directory, which supply examples of web

pages matching each topic. These example pages are used to train a

classifier3 to map newly encountered pages into the topic taxonomy.

The user selects a subset of taxonomy nodes (topics) of interest to crawl,

and the crawler preferentially follows links from pages that the classi-

fier deems most relevant to the topics of interest. Links from pages that

match “parent topics” are also followed (e.g., if the user indicated an

interest in bicycling, the crawler follows links from pages about sports

in general). In addition, an attempt is made to identify hub pages —

pages with a collection of links to topical pages — using the HITS link

2 This aspect was studied in detail by Pant and Srinivasan [107].
3 Pant and Srinivasan [106] offer a detailed study of classifier choices for topical crawlers.



4.2 Scoped Crawling 211

analysis algorithm [82]. Links from hub pages are followed with higher

priority than other links.

The empirical findings of Chakrabarti et al. [34] established topical

crawling as a viable and effective paradigm:

• A general web crawler seeded with topical pages quickly

becomes mired in irrelevant regions of the web, yielding very

poor weighted coverage. In contrast, a topical crawler suc-

cessfully stays within scope, and explores a steadily growing

population of topical pages over time.
• Two topical crawler instances, started from disparate seeds,

converge on substantially overlapping sets of pages.

Beyond the basics of topical crawling discussed above, there are two

key considerations [92]: Greediness and adaptivity.

4.2.1.1 Greediness

Paths between pairs of relevant pages sometimes pass through one or

more irrelevant pages. A topical crawler that is too greedy will stop

when it reaches an irrelevant page, and never discovers subsequent rel-

evant page(s). On the other extreme, a crawler that ignores relevance

considerations altogether degenerates into a non-topical crawler, and

achieves very poor weighted coverage, as we have discussed. The ques-

tion of how greedily to crawl is an instance of the explore versus exploit

tradeoff observed in many contexts. In this context, the question is: How

should the crawler balance exploitation of direct links to (apparently)

relevant pages, with exploration of other links that may, eventually,

lead to relevant pages?

In the approach of Hersovici et al. [74], a page p inherits some of the

relevance of the pages that link to p, and so on in a recursive fashion.

This passing along of relevance forces the crawler to traverse irrelevant

pages that have relevant ancestors. A decay factor parameter controls

how rapidly relevance decays as more links are traversed. Eventually, if

no new relevant pages are encountered, relevance approaches zero and

the crawler ceases exploration on that path.



212 Batch Crawl Ordering

Later work by Diligenti et al. [54] proposed to classify pages accord-

ing to their distance from relevant pages. Each uncrawled page p is

assigned a distance estimate d(p) ∈ [0,∞) that represents the crawler’s

best guess as to how many links lie between p and the nearest rele-

vant page.4 Pages are ordered for crawling according to d(·). As long

as one or more uncrawled pages having d(p) = 0 are available, the

crawler downloads those pages; if not, the crawler resorts to down-

loading d(p) = 1 pages, and so on. The threshold used to separate “rel-

evant” pages from “irrelevant” ones controls greediness: If the threshold

is strict (i.e., only pages with strong relevance indications are classified

as “relevant”), then the crawler will favor long paths to strongly rele-

vant pages over short paths to weakly relevant pages, and vice versa.

A simple meta-heuristic to control the greediness of a crawler was

proposed by Menczer et al. [92]: Rather than continuously adjusting

the crawl order as new pages and new links are discovered, commit

to crawling N pages from the current crawl order before reordering.

This heuristic has the attractive property that it can be applied in

conjunction with any existing crawl ordering policy. Menczer et al. [92]

demonstrated empirically that this heuristic successfully controls the

level of greediness, and that there is benefit in not being too greedy,

in terms of improved weighted coverage in the long run. The study

done by Diligenti et al. [54] also showed improved long-term weighted

coverage by not being overly greedy. We are not aware of any attempts

to characterize the optimal level of greediness.

4.2.1.2 Adaptivity

In most topical crawling approaches, once the crawler is unleashed, the

page ordering strategy is fixed for the duration of the crawl. Some have

studied ways for a crawler to adapt its strategy over time, in response to

observations made while the crawl is in flight. For example, Aggarwal

et al. [5] proposed a method to learn on the fly how best to combine

4 The d(·) function can be trained in the course of the crawl as relevant and irrelevant pages
are encountered at various distances from one another. As an optional enhancement to

accelerate the training process, ancestors of page p are located using a full-web search
engine that services “links-to” queries, and added to the training data.



4.3 Efficient Large-Scale Implementation 213

relevance signals found in the content of pages linking to p, content

of p’s “siblings” (pages linked to by the same “parent” page), and

p’s URL, into a single relevance estimate on which to base the crawl

order.

Evolutionary algorithms (e.g., genetic algorithms) have been

explored as a means to adapt crawl behavior over time [37, 80, 91].

For example, the InfoSpiders approach [91] employs many indepen-

dent crawling agents, each with its own relevance classifier that adapts

independently over time. Agents reproduce and die according to an

evolutionary process: Agents that succeed in locating relevant content

multiply and mutate, whereas unsuccessful ones die off. The idea is to

improve relevance estimates over time, and also to achieve specializa-

tion whereby different agents become adept at locating different pockets

of relevant content.

4.3 Efficient Large-Scale Implementation

As discussed in Section 2.3.1, breadth-first crawl ordering can use sim-

ple disk-based FIFO queues. Basic scoped crawling methods also afford

a fairly simple and efficient implementation: The process of assess-

ing page relevance and assigning priorities to extracted URLs can

occur in the main page processing pipeline,5 and a disk-based prior-

ity queue may be used to maintain the crawling frontier (also discussed

in Section 2.3.1).

Most of the comprehensive (non-scoped) approaches also oper-

ate according to numerical page priorities, but the priority values of

enqueued pages are subject to change over time as new information is

uncovered (e.g., new links to a page). The more sophisticated scoped

crawling approaches also leverage global information (e.g., Chakrabarti

et al. [34] used link analysis to identify topical hub pages), and there-

fore fall into this category as well. With time-varying priorities, one

approach is to recompute priority values periodically — either from

5 In cases where relevance is assessed via a trained classifier, training (and optional periodic
retraining) can occur offline and out of the way of the main crawling pipeline.



214 Batch Crawl Ordering

scratch or incrementally6 — using distributed disk-based methods sim-

ilar to those employed in database and map-reduce environments.

Aside from facilitating scalable implementation, delaying the propa-

gation of new signals to the crawl order has a side-effect of introducing

an exploration component into an otherwise exploitation-dominated

approach, which is of particular significance in the scoped crawling

case (see Section 4.2.1.1). On the other hand, some time-critical crawl-

ing opportunities (e.g., a new entry of a popular blog) might be com-

promised. One way to mitigate this problem is to assign initial priority

estimates that are not based on global analysis, e.g., using site-level

features (e.g., site-level PageRank), URL features (e.g., number of char-

acters or slashes in the URL string), or features of the page from which

a URL has been extracted (e.g., that page’s PageRank).

The OPIC approach [1] propagates numerical “cash” values to URLs

extracted from crawled pages, including URLs already in the frontier.

The intention is to maintain a running approximation of PageRank,

without the high overhead of the full PageRank computation. If enough

memory is (collectively) available on the crawling machines, cash coun-

ters can be held in memory and incremented in near-real-time (cash

flows across machine boundaries can utilize MPI or another message-

passing protocol). Alternatively, following the deferred-updating rubric

mentioned above, cash increments can be logged to a side file, with peri-

odic summing of cash values using a disk-based sort-merge algorithm.

6 Basic computations like counting links can be maintained incrementally using efficient

disk-based view maintenance algorithms; more elaborate computations like PageRank tend
to be more difficult but offer some opportunities for incremental maintenance [38].



5

Incremental Crawl Ordering

In contrast to a batch crawler, a continuous or incremental crawler

never “starts over.” Instead, it continues running forever (conceptually

speaking). To maintain freshness of old crawled content, an incremental

crawler interleaves revisitation of previously crawled pages with first-

time visitation of new pages. The aim is to achieve good freshness and

coverage simultaneously.

Coverage is measured according to the same weighted coverage

metric applied to batch crawlers (Section 4). An analogous weighted

freshness metric is as follows:

WF(t) =
∑

p∈C(t)

w(p) · f(p,t),

where f(p,t) is page p’s freshness level at time t, measured in one of

several possible ways (see below).1 One is typically interested in the

1 Pages that have been removed from the web (i.e., their URL is no longer valid) but whose
removal has not yet been detected by the crawler, are assigned a special freshness level,

e.g., the minimum value on the freshness scale in use.

215



216 Incremental Crawl Ordering

steady-state average of WF:

WF = lim
t→∞

1

t

∫ t

0
WF(t)dt.

At each step, an incremental crawler faces a choice between two

basic actions:

(1) Download a new page. Consequences include:

(a) May improve coverage.

(b) May supply new links, which can lead to discovery

of new pages.2 (New links also contribute to the

crawler’s estimates of page importance, relevance,

and other aspects like likelihood of being spam; cf.

Section 6.)

(2) Re-download an old page. Consequences include:

(a) May improve freshness.

(b) May supply new links or reveal the removal of links,

with similar ramifications as 1(b) above.

In the presence of dynamic pages and finite crawling resources, there

is a tradeoff between coverage and freshness. There is no consensus

about the best way to balance the two. Some contend that coverage

and freshness are like apples and oranges, and balancing the two objec-

tives should be left as a business decision, i.e., do we prefer broad

coverage of content that may be somewhat out-of-date, or narrower

coverage with fresher content? Others have proposed specific schemes

for combining the two objectives into a single framework: The approach

taken in WebFountain [56] focuses on the freshness problem, and folds

in coverage by treating uncrawled pages as having a freshness value of

zero. The OPIC approach [1] focuses on ensuring coverage of important

pages, and in the process periodically revisits old important pages.

Aside from the two approaches just mentioned, most published

work on crawling focuses either uniquely on coverage or uniquely on

2 Pages can also be discovered via “out-of-band” channels, e.g., e-mail messages, RSS feeds,
user browsing sessions.



5.1 Maximizing Freshness 217

freshness. We have already surveyed coverage-oriented techniques in

Section 4, in the context of batch crawling. In incremental crawling,

coverage can be expanded not only by following links from newly

crawled pages, but also by monitoring old pages to detect any new

links that might be added over time. This situation was studied by

Dasgupta et al. [48], who used a set-cover formulation to identify small

sets of old pages that collectively permit discovery of most new pages.

The remainder of this chapter is dedicated to techniques that revisit

old pages to acquire a fresh version of their content (not just links to

new pages). Section 5.1 focuses on maximizing the average freshness

of crawled content, whereas Section 5.2 studies the subtly different

problem of capturing the history of content updates. Following these

conceptual discussions, Section 5.3 considers practical implementation

strategies.

5.1 Maximizing Freshness

Here the goal is to maximize time-averaged weighted freshness, WF, as

defined above. To simplify the study of this problem, it is standard prac-

tice to assume that the set of crawled pages is fixed (i.e., C(t) is static,

so we drop the dependence on t), and that each page p ∈ C exhibits a

stationary stochastic pattern of content changes over time. Freshness

maximization divides into three relatively distinct sub-problems:

• Model estimation. Construct a model for the temporal

behavior of each page p ∈ C.
• Resource allocation. Given a maximum crawl rate r,

assign to each page p ∈ C a revisitation frequency r(p) such

that
∑

p∈C
r(p) = r.

• Scheduling. Produce a crawl order that adheres to the tar-

get revisitation frequencies as closely as possible.

With model estimation, the idea is to estimate the temporal behav-

ior of p, given samples of the content of p or pages related to p. Cho

and Garćıa-Molina [42] focused on how to deal with samples of p that

are not evenly spaced in time, which may be the case if the samples

have been gathered by the crawler itself in the past, while operating



218 Incremental Crawl Ordering

under a non-uniform scheduling regime. Barbosa et al. [15] considered

how to use content-based features of a single past sample of p to infer

something about its temporal behavior. Cho and Ntoulas [44] and Tan

et al. [113] focused on how to infer the behavior of p from the behavior

of related pages — pages on the same web site, or pages with similar

content, link structure, or other features.

We now turn to scheduling. Coffman et al. [46] pursued random-

ized scheduling policies, where at each step page p is selected with

probability r(p)/r, independent of the past schedule. Wolf et al. [115]

formulated the crawl scheduling problem in terms of network flow, for

which prior algorithms exist. Cho and Garćıa-Molina [41] studied a

special case of the scheduling problem in which pages have the same

target revisitation frequency r(p). All three works concluded that it is

best to space apart downloads of each page p uniformly in time, or as

close to uniformly as possible.

Resource allocation is generally viewed as the central aspect of fresh-

ness maximization. We divide work on resource allocation into two cat-

egories, according to the freshness model adopted:

5.1.1 Binary Freshness Model

In the binary freshness model, also known as obsolescence, f(p,t) ∈
{0,1}. Specifically,

f(p,t) =

{

1 if the cached copy of p is identical3 to the live copy

0 otherwise
.

Under the binary freshness model, if f(p,t) = 1 then p is said to

be “fresh,” otherwise it is termed “stale.” Although simplistic, a great

deal of useful intuition has been derived via this model.

The first to study the freshness maximization problem were Coffman

et al. [46], who postulated a Poisson model of web page change. Specif-

ically, a page undergoes discrete change events, which cause the copy

3 It is common to replace the stipulation “identical” with “near-identical,” and ignore minor
changes like counters and timestamps. Some of the techniques surveyed in Section 6.1 can
be used to classify near-identical web page snapshots.



5.1 Maximizing Freshness 219

cached by the crawler to become stale. For each page p, the occurrence

of change events is governed by a Poisson process with rate parameter

λ(p), which means that changes occur randomly and independently,

with an average rate of λ(p) changes per time unit.

A key observation by Coffman et al. [46] was that in the case of

uniform page weights (i.e., all w(p) values are equal), the appealing

idea of setting revisitation frequencies in proportion to page change

rates, i.e., r(p) ∝ λ(p) (called proportional resource allocation), can be

suboptimal. Coffman et al. [46] also provided a closed-form optimal

solution for the case in which page weights are proportional to change

rates (i.e., w(p) ∝ λ(p)), along with a hint for how one might approach

the general case.

Cho and Garćıa-Molina [41] continued the work of Coffman

et al. [46], and derived a famously counterintuitive result: In the

uniform weights case, a uniform resource allocation policy, in which

r(p) = r/|C| for all p, achieves higher average binary freshness than

proportional allocation. The superiority of the uniform policy to the

proportional one holds under any distribution of change rates (λ(p)

values).

The optimal resource allocation policy for binary freshness, also

given by Cho and Garćıa-Molina [41], exhibits the following intrigu-

ing property: Pages with a very fast rate of change (i.e., λ(p) very

high relative to r/|C|) ought never to be revised by the crawler, i.e.,

r(p) = 0. The reason is as follows: A page p1 that changes once per

second, and is revisited once per second by the crawler, is on aver-

age only half synchronized (f(p1) = 0.5). On the other hand, a page

p2 that changes once per day, and is revisited once per hour by the

crawler, has much better average freshness (f(p2) = 24/25 under ran-

domized scheduling, according to the formula given by Cho and Garćıa-

Molina [41]). The crawling resources required to keep one fast-changing

page like p1 weakly synchronized can be put to better use keeping sev-

eral slow-changing pages like p2 tightly synchronized, assuming equal

page weights. Hence, in terms of average binary freshness, it is best for

the crawler to “give up on” fast-changing pages, and put its energy into

synchronizing moderate- and slow-changing ones. This resource alloca-

tion tactic is analogous to advanced triage in the field of medicine [3].



220 Incremental Crawl Ordering

The discussion so far has focused on a Poisson page change model

in which the times at which page changes occur are statistically inde-

pendent. Under such a model, the crawler cannot time its visits to

coincide with page change events. The following approaches relax the

independence assumption.

Wolf et al. [115] studied incremental crawling under a quasi-

deterministic page change model, in which page change events are

non-uniform in time, and the distribution of likely change times is

known a priori. (This work also introduced a search-centric page

weighting scheme, under the terminology embarrassment level. The

embarrassment-based scheme sets w(p) ∝ c(p), where c(p) denotes the

probability that a user will click on p after issuing a search query, as

estimated from historical search engine usage logs. The aim is to revisit

frequently clicked pages preferentially, thereby minimizing “embarrass-

ing” incidents in which a search result contains a stale page.)

The WebFountain technique by Edwards et al. [56] does not assume

any particular page evolution model a priori. Instead, it categorizes

pages adaptively into one of n change rate buckets based on recently

observed change rates (this procedure replaces explicit model estima-

tion). Bucket membership yields a working estimate of a page’s present

change rate, which is in turn used to perform resource allocation and

scheduling.

5.1.2 Continuous Freshness Models

In a real crawling scenario, some pages may be “fresher” than others.

While there is no consensus about the best way to measure freshness,

several non-binary freshness models have been proposed.

Cho and Garćıa-Molina [41] introduced a temporal freshness metric,

in which f(p,t) ∝ −age(p,t), where

age(p,t) =

{

0 if the cached copy of p is identical to the live copy

a otherwise
,

where a denotes the amount of time the copies have differed. The

rationale for this metric is that the longer a cached page remains unsyn-

chronized with the live copy, the more their content tends to drift apart.



5.1 Maximizing Freshness 221

The optimal resource allocation policy under this age-based fresh-

ness metric, assuming a Poisson model of page change, is given by Cho

and Garćıa-Molina [41]. Unlike in the binary freshness case, there is

no “advanced triage” effect — the revisitation frequency r(p) increases

monotonically with the page change rate λ(p). Since age increases with-

out bound, the crawler cannot afford to “give up on” any page.

Olston and Pandey [99] introduced an approach in which, rather

than relying on time as a proxy for degree of change, the idea is

to measure changes in page content directly. A content-based fresh-

ness framework is proposed, which constitutes a generalization of

binary freshness: A page is divided into a set of content fragments4

f1,f2, . . . ,fn, each with a corresponding weight w(fi) that captures

the fragment’s importance and/or relevance. Freshness is measured as

the (weighted) fraction of fragments in common between the cached

and live page snapshots, using the well-known Jaccard set similarity

measure.

Under a content-based freshness model, the goal is to minimize the

amount of incorrect content in the crawler’s cache, averaged over time.

To succeed in this goal, Olston and Pandey [99] argued that in addi-

tion to characterizing the frequency with which pages change, it is

necessary to characterize the longevity of newly updated page content.

Long-lived content (e.g., today’s blog entry, which will remain in the

blog indefinitely) is more valuable to crawl than ephemeral content

(e.g., today’s “quote of the day,” which will be overwritten tomorrow),

because it stays fresh in the cache for a longer period of time. The opti-

mal resource allocation policy for content-based freshness derived by

Olston and Pandey [99] differentiates between long-lived and ephemeral

content, in addition to differentiating between frequently and infre-

quently changing pages.

In separate work, Pandey and Olston [103] proposed a search-centric

method of assigning weights to individual content changes, based on

the degree to which a change is expected to impact search ranking.

The rationale is that even if a page undergoes periodic changes, and

4 Fragments can be determined in a number of ways, e.g., using logical or visual document
structure, or using shingles [28]).



222 Incremental Crawl Ordering

the new content supplied by the changes is long-lived, if the search

engine’s treatment of the page is unaffected by these changes, there is

no need for the crawler to revisit it.

5.2 Capturing Updates

For some crawling applications, maximizing average freshness of cached

pages is not the right objective. Instead, the aim is to capture as many

individual content updates as possible. Applications that need to cap-

ture updates include historical archival and temporal data mining, e.g.,

time-series analysis of stock prices.

The two scenarios (maximizing freshness versus capturing updates)

lead to very different page revisitation policies. As we saw in Section 5.1,

in the freshness maximization scenario, when resources are scarce the

crawler should ignore pages that frequently replace their content, and

concentrate on maintaining synchronization with pages that supply

more persistent content. In contrast, in the update capture scenario,

pages that frequently replace their content offer the highest density of

events to be captured, and also the highest urgency to capture them

before they are lost.

Early update capture systems, e.g., CONQUER [86], focused on

user-facing query languages, algorithms to difference page snapshots

and extract relevant tidbits (e.g., updated stock price), and query

processing techniques. Later work considered the problem of when to

revisit each page to check for updates.

In work by Pandey et al. [105], the objective was to maximize the

(weighted) number of updates captured. A suitable resource allocation

algorithm was given, which was shown empirically to outperform both

uniform and proportional resource allocation.

In subsequent work, Pandey et al. [102] added a timeliness

dimension, to represent the sensitivity of the application to delays

in capturing new information from the web. (For example, historical

archival has a low timeliness requirement compared with real-time stock

market analysis.) The key insight was that revisitation of pages whose

updates do not replace old content can be postponed to a degree permit-

ted by the application’s timeliness requirement, yielding a higher total



5.3 Efficient Large-Scale Implementation 223

amount of information captured. A timeliness-sensitive resource alloca-

tion algorithm was given, along with a formal performance guarantee.

5.3 Efficient Large-Scale Implementation

One key aspect of page revisitation policy is change model estimation.

For certain pages (e.g., newly discovered pages on important sites),

model estimation is time-critical; but for the vast majority of pages

(e.g., unimportant, well-understood, or infrequently crawled ones) it

can be performed lazily, in periodic offline batches. Since most change

models deal with each page in isolation, this process is trivially paral-

lelizable. For the time-critical pages, the relevant data tend to be small

and amenable to caching: Most techniques require a compact signature

(e.g., a few shingle hashes) for two to five of the most recent page snap-

shots. The search-centric approach of Pandey and Olston [103] requires

more detailed information from pages, and incorporates model estima-

tion into the process of re-building the search index.

After model estimation, the other two aspects of revisitation policy

are resource allocation and scheduling. While there is quite a bit of work

on using global optimization algorithms to assign revisitation schedules

to individual pages, it is not immediately clear how to incorporate such

algorithms into a large-scale crawler. One scalable approach is to group

pages into buckets according to desired revisitation frequency (as deter-

mined by resource allocation, see below), and cycle through each bucket

such that the time to complete one cycle matches the bucket’s revisi-

tation frequency target. This approach ensures roughly equal spacing

of revisitations of a given page, which has been found to be a good

rule of thumb for scheduling, as mentioned in Section 5.1. It also yields

an obvious disk-based implementation: Each bucket is a FIFO queue,

where URLs removed from the head are automatically appended to the

tail; crawler machines pull from the queues according to a weighted ran-

domized policy constructed to achieve the target revisitation rates in

expectation.

In the bucket-oriented approach, pages that are identical (or near-

identical) from the point of view of the adopted model are placed into

the same bucket. For example, in the basic freshness maximization



224 Incremental Crawl Ordering

formulation under the binary freshness model (Section 5.1.1), pages

can be bucketized by change frequency. Assignment of a revisitation

frequency target to each bucket is done by the resource allocation pro-

cedure. The WebFountain crawler by Edwards et al. [56] uses change

frequency buckets and computes bucket revisitation frequency targets

periodically using a nonlinear problem (NLP) solver. Since the NLP is

formulated at the bucket granularity (not over individual pages), the

computational complexity is kept in check. Most other resource allo-

cation strategies can also be cast into the bucket-oriented NLP frame-

work. To take a simple example, an appealing variant of the uniform

resource allocation is to direct more resources toward important pages;

in this case, one can bucketize pages by importance, and apply a sim-

ple NLP over bucket sizes and importance weights to determine the

revisitation rate of each bucket.



6

Avoiding Problematic and Undesirable Content

This section discusses detection and avoidance of content that is redun-

dant, wasteful or misleading.

6.1 Redundant Content

As discussed in Section 3.2.1, there is a prevalence of duplicate and

near-duplicate content on the web. Shingling [28] is a standard way to

identify near-duplicate pages, but shingling is performed on web page

content, and thus requires these pages to have been crawled. As such,

it does not help to reduce the load on the crawler; however, it can be

used to limit and diversify the set of search results presented to a user.

Some duplication stems from the fact that many web sites allow

multiple URLs to refer to the same content, or content that is identical

modulo ever-changing elements such as rotating banner ads, evolving

comments by readers, and timestamps. Schonfeld et al. proposed the

“duplicate URL with similar text” (DUST) algorithm [12] to detect

this form of aliasing, and to infer rules for normalizing URLs into a

canonical form. Dasgupta et al. [49] generalized DUST by introduc-

ing a learning algorithm that can generate rules containing regular

225



226 Avoiding Problematic and Undesirable Content

expressions, experimentally tripling the number of duplicate URLs that

can be detected. Agarwal et al. attempted to bound the computational

complexity of learning rules using sampling [4]. Rules inferred using

these algorithms can be used by a web crawler to normalize URLs

after extracting them from downloaded pages and before passing them

through the duplicate URL eliminator (Section 2.3.2) and into the

frontier.

Another source of duplication is mirroring [18, 19, 52]: Providing

all or parts of the same web site on different hosts. Mirrored web sites

in turn can be divided into two groups: Sites that are mirrored by the

same organization (for example by having one web server serving mul-

tiple domains with the same content, or having multiple web servers

provide synchronized content), and content that is mirrored by mul-

tiple organizations (for example, schools providing Unix man pages on

the web, or web sites republishing Wikipedia content, often somewhat

reformatted). Detecting mirrored content differs from detecting DUST

in two ways: On the one hand, with mirroring the duplication occurs

across multiple sites, so mirror detection algorithms have to consider

the entire corpus. On the other hand, entire trees of URLs are mir-

rored, so detection algorithms can use URL trees (suitably compacted

e.g., through hashing) as a feature to detect mirror candidates, and then

compare the content of candidate subtrees (for example via shingling).

6.2 Crawler Traps

Content duplication inflates the web corpus without adding much infor-

mation. Another phenomenon that inflates the corpus without adding

utility is crawler traps: Web sites that populate a large, possibly infi-

nite URL space on that site with mechanically generated content.

Some crawler traps are non-malicious, for example web-based calen-

daring tools that generate a page for every month of every year, with a

hyperlink from each month to the next (and previous) month, thereby

forming an unbounded chain of dynamically generated pages. Other

crawler traps are malicious, often set up by “spammers” to inject large

amounts of their content into a search engine, in the hope of hav-

ing their content show up high in search result pages or providing



6.3 Web Spam 227

many hyperlinks to their “landing page,” thus biasing link-based rank-

ing algorithms such as PageRank. There are many known heuristics

for identifying and avoiding spam pages or sites, see Section 6.3. Not

much research has been published on algorithms or heuristics for detect-

ing crawler traps directly. The IRLbot crawler [84] utilizes a heuristic

called “Budget Enforcement with Anti-Spam Tactics” (BEAST), which

assigns a budget to each web site and prioritizes URLs from each web

site based on the site’s remaining budget combined with the domain’s

reputation.

6.3 Web Spam

Web spam may be defined as “web pages that are crafted for the sole

purpose of increasing the ranking of these or some affiliated pages, with-

out improving the utility to the viewer” [97]. Web spam is motivated

by the monetary value of achieving a prominent position in search-

engine result pages. There is a multi-billion dollar industry devoted to

search engine optimization (SEO), most of it being legitimate but some

of it misleading. Web spam can be broadly classified into three cate-

gories [69]: Keyword stuffing, populating pages with highly searched or

highly monetizable terms; link spam, creating cliques of tightly inter-

linked web pages with the goal of biasing link-based ranking algorithms

such as PageRank [101]; and cloaking, serving substantially different

content to web crawlers than to human visitors (to get search referrals

for queries on a topic not covered by the page).

Over the past few years, many heuristics have been proposed to

identify spam web pages and sites, see for example the series of AIRweb

workshops [76]. The problem of identifying web spam can be framed

as a classification problem, and there are many well-known classifi-

cation approaches (e.g., decision trees, Bayesian classifiers, support

vector machines). The main challenge is to identify features that are

predictive of web spam and can thus be used as inputs to the classi-

fier. Many such features have been proposed, including hyperlink fea-

tures [16, 17, 50, 116], term and phrase frequency [97], DNS lookup

statistics [59], and HTML markup structure [114]. Combined, these

features tend to be quite effective, although web spam detection is a



228 Avoiding Problematic and Undesirable Content

constant arms race, with both spammers and search engines evolving

their techniques in response to each other’s actions.

Spam detection heuristics are used during the ranking phase of

search, but they can also be used during the corpus selection phase

(when deciding which pages to index) and crawling phase (when decid-

ing what crawl priority to assign to web pages). Naturally, it is easier to

avoid crawling spam content in a continuous or iterative crawling set-

ting, where historical information about domains, sites, and individual

pages is available.1

6.4 Cloaked Content

Cloaking refers to the practice of serving different content to web

crawlers than to human viewers of a site [73]. Not all cloaking is mali-

cious: For example, many web sites with interactive content rely heavily

on JavaScript, but most web crawlers do not execute JavaScript, so it

is reasonable for such a site to deliver alternative, script-free versions

of its pages to a search engine’s crawler to enable the engine to index

and expose the content.

Web sites distinguish mechanical crawlers from human visitors

either based on their User-Agent field (an HTTP header that is used

to distinguish different web browsers, and by convention is used by

crawlers to identify themselves), or by the crawler’s IP address (the

SEO community maintains lists of the User-Agent fields and IP addresses

of major crawlers). One way for search engines to detect that a web

server employs cloaking is by supplying a different User-Agent field [117].

Another approach is to probe the server from IP addresses not known

to the SEO community (for example by enlisting the search engine’s

user base).

A variant of cloaking is called redirection spam. A web server utiliz-

ing redirection spam serves the same content both to crawlers and to

human-facing browser software (and hence, the aforementioned detec-

tion techniques will not detect it); however, the content will cause a

1 There is of course the possibility of spammers acquiring a site with a good history and
converting it to spam, but historical reputation-based approaches at least “raise the bar”
for spamming.



6.4 Cloaked Content 229

browser to immediately load a new page presenting different content.

Redirection spam is facilitated either through the HTML META REFRESH

tag (whose presence is easy to detect), or via JavaScript, which most

browsers execute but most crawlers do not. Chellapilla and Maykov [36]

conducted a study of pages employing JavaScript redirection spam, and

found that about half of these pages used JavaScript’s eval statement

to obfuscate the URLs to which they redirect, or even parts of the script

itself. This practice makes static detection of the redirection target (or

even the fact that redirection is occurring) very difficult. Chellapilla

and Maykov argued for the use of lightweight JavaScript parsers and

execution engines in the crawling/indexing pipeline to evaluate scripts

(in a time-bounded fashion, since scripts may not terminate) to deter-

mine whether redirection occurs.



7

Deep Web Crawling

Some content is accessible only by filling in HTML forms, and cannot be

reached via conventional crawlers that just follow hyperlinks.1 Crawlers

that automatically fill in forms to reach the content behind them are

called hidden web or deep web crawlers.

The deep web crawling problem is closely related to the problem

known as federated search or distributed information retrieval [30], in

which a mediator forwards user queries to multiple searchable collec-

tions, and combines the results before presenting them to the user. The

crawling approach can be thought of as an eager alternative, in which

content is collected in advance and organized in a unified index prior to

retrieval. Also, deep web crawling considers structured query interfaces

in addition to unstructured “search boxes,” as we shall see.

7.1 Types of Deep Web Sites

Figure 7.1 presents a simple taxonomy of deep web sites. Content

is either unstructured (e.g., free-form text) or structured (e.g., data

1 Not all content behind form interfaces is unreachable via hyperlinks — some content is
reachable in both ways [35].

230



7.1 Types of Deep Web Sites 231

Unstructured Structured

Content Content

Unstructured News archive Product review site

query interface (simple search)

Structured News archive Online bookstore

query interface (advanced search)

Fig. 7.1 Deep web taxonomy.

records with typed fields). Similarly, the form interface used to query

the content is either unstructured (i.e., a single query box that accepts

a free-form query string) or structured (i.e., multiple query boxes that

pertain to different aspects of the content).2

A news archive contains content that is primarily unstructured (of

course, some structure is present, e.g., title, date, author). In con-

junction with a simple textual search interface, a news archive consti-

tutes an example of an unstructured-content/unstructured-query deep

web site. A more advanced query interface might permit structured

restrictions on attributes that are extractable from the unstructured

content, such as language, geographical references, and media type,

yielding an unstructured-content/structured-query instance.

A product review site has relatively structured content (product

names, numerical reviews, reviewer reputation, and prices, in addition

to free-form textual comments), but for ease of use typically offers an

unstructured search interface. Lastly, an online bookstore offers struc-

tured content (title, author, genre, publisher, price) coupled with a

structured query interface (typically a subset of the content attributes,

e.g., title, author and genre).

For simplicity most work focuses on either the upper-left quadrant

(which we henceforth call the unstructured case), or the lower-right

quadrant (structured case).

2 The unstructured versus structured dichotomy is really a continuum, but for simplicity
we present it as a binary property.



232 Deep Web Crawling

7.2 Problem Overview

Deep web crawling has three steps:

(1) Locate deep web content sources. A human or crawler

must identify web sites containing form interfaces that lead

to deep web content. Barbosa and Freire [14] discussed the

design of a scoped crawler for this purpose.

(2) Select relevant sources. For a scoped deep web crawling

task (e.g., crawling medical articles), one must select a rele-

vant subset of the available content sources. In the unstruc-

tured case this problem is known as database or resource

selection [32, 66]. The first step in resource selection is to

model the content available at a particular deep web site,

e.g., using query-based sampling [31].

(3) Extract underlying content. Finally, a crawler must

extract the content lying behind the form interfaces of the

selected content sources.

For major search engines, Step 1 is almost trivial, since they already

possess a comprehensive crawl of the surface web, which is likely to

include a plethora of deep web query pages. Steps 2 and 3 pose signifi-

cant challenges. Step 2 (source selection) has been studied extensively

in the distributed information retrieval context [30], and little has been

done that specifically pertains to crawling. Step 3 (content extraction)

is the core problem in deep web crawling; the rest of this chapter covers

the (little) work that has been done on this topic.

7.3 Content Extraction

The main approach to extracting content from a deep web site proceeds

in four steps (the first two steps apply only to the structured case):

(1) Select a subset of form elements to populate,3 or perhaps

multiple such subsets. This is largely an open problem,

where the goals are to: (a) avoid form elements that merely

3 The remaining elements can remain blank, or be populated with a wildcard expression
when applicable.



7.3 Content Extraction 233

affect the presentation of results (e.g., sorting by price ver-

sus popularity); and (b) avoid including correlated elements,

which artificially increase the dimensionality of the search

space [88].

(2) If possible, decipher the role of each of the targeted form

elements (e.g., book author versus publication date), or at

least understand their domains (proper nouns versus dates).

Raghavan and Garćıa-Molina [109] and several subsequent

papers studied this difficult problem.

(3) Create an initial database of valid data values (e.g., “Ernest

Hemingway” and 1940 in the structured case; English words

in the unstructured case). Some sources of this information

include [109]: (a) a human administrator; (b) non-deep-

web online content, e.g., a dictionary (for unstructured key-

words) or someone’s list of favorite authors; (c) drop-down

menus for populating form elements (e.g., a drop-down list

of publishers).

(4) Use the database to issue queries to the deep web site

(e.g., publisher = “Scribner”), parse the result and extract

new data values to insert into the database (e.g., author =

“Ernest Hemingway”), and repeat.

We elaborate on Step 4, which has been studied under (variations

of) the following model of deep web content and queries [98, 117]:

A deep web site contains one or more content items, which are either

unstructured documents or structured data records. A content item

contains individual data values, which are text terms in the unstruc-

tured case, or data record elements like author names and dates in

the structured case. Data values and content values are related via a

bipartite graph, depicted in Figures 7.2 (unstructured case) and 7.3

(structured case).

A query consists of a single data value4 V submitted to the form

interface, which retrieves the set of content items directly connected

4 It is assumed that any data value can form the basis of a query, even though this is not
always the case in practice (e.g., a bookstore may not permit querying by publisher). Also,
multi-value queries are not considered.



234 Deep Web Crawling

Fig. 7.2 Deep web content model (unstructured content).

Fig. 7.3 Deep web content model (structured content).

to V via edges in the graph, called V ’s result set. Each query incurs

some cost to the crawler, typically dominated by the overhead of

downloading and processing each member of the result set, and hence

modeled as being linearly proportional to result cardinality.

Under this model, the deep web crawling problem can be cast as

a weighted set-cover problem: Select a minimum-cost subset of data

values that cover all content items. Unfortunately, unlike in the usual

set-cover scenario, in our case the graph is only partially known at the

outset, and must be uncovered progressively during the course of the

crawl. Hence, adaptive graph traversal strategies are required.

A simple greedy traversal strategy was proposed by Barbosa and

Freire [13] for the unstructured case: At each step the crawler issues as

a query the highest-frequency keyword that has not yet been issued,



7.3 Content Extraction 235

where keyword frequency is estimated by counting occurrences in docu-

ments retrieved so far. In the bipartite graph formulation, this strategy

is equivalent to selecting the data value vertex of highest degree, accord-

ing to the set of edges uncovered so far.

A similar strategy was proposed by Wu et al. [117] for the structured

case, along with a refinement in which the crawler bypasses data values

that are highly correlated with ones that have already been selected, in

the sense that they connect to highly overlapping sets of content items.

Ntoulas et al. [98] proposed statistical models for estimating the

number of previously unseen content items that a particular data value

is likely to cover, focusing on the unstructured case.

Google’s deep web crawler [88] uses techniques similar to the ones

described above, but adapted to extract a small amount of content

from a large number (millions) of sites, rather than aiming for extensive

coverage of a handful of sites.



Web Mining 

 

 

 

 

 

 
UNIT – V 

Opinion Mining and Web Usage Mining



11 Opinion Mining  

In Chap. 9, we studied structured data extraction from Web pages. Such 
data are usually records retrieved from underlying databases and displayed 
in Web pages following some fixed templates. The Web also contains a 
huge amount of information in unstructured texts. Analyzing these texts is 
of great importance and perhaps even more important than extracting 
structured data because of the sheer volume of valuable information of al-
most any imaginable types contained in them. In this chapter, we only fo-
cus on mining of opinions on the Web. The task is not only technically 
challenging because of the need for natural language processing, but also 
very useful in practice. For example, businesses always want to find public 
or consumer opinions on their products and services. Potential customers 
also want to know the opinions of existing users before they use a service 
or purchase a product. Moreover, opinion mining can also provide valuable 
information for placing advertisements in Web pages. If in a page people 
express positive opinions or sentiments on a product, it may be a good idea 
to place an ad of the product. However, if people express negative opinions 
about the product, it is probably not wise to place an ad of the product. A 
better idea may be to place an ad of a competitor’s product.   

The Web has dramatically changed the way that people express their 
opinions. They can now post reviews of products at merchant sites and ex-
press their views on almost anything in Internet forums, discussion groups, 
blogs, etc., which are commonly called the user generated content or
user generated media. This online word-of-mouth behavior represents 
new and measurable sources of information with many practical applica-
tions. Techniques are now being developed to exploit these sources to help 
businesses and individuals gain such information effectively and easily. 

The first part of this chapter focuses on three mining tasks of evaluative 

texts (which are documents expressing opinions):  

1. Sentiment classification: This task treats opinion mining as a text clas-
sification problem. It classifies an evaluative text as being positive or 
negative. For example, given a product review, the system determines 
whether the review expresses a positive or a negative sentiment of the 
reviewer. The classification is usually at the document-level. No details 
are discovered about what people liked or didn’t like.     



412      11 Opinion Mining

1. Featured-based opinion mining and summarization: This task goes 
to the sentence level to discover details, i.e., what aspects of an object 
that people liked or disliked. The object could be a product, a service, a 
topic, an individual, an organization, etc. For example, in a product re-
view, this task identifies product features that have been commented on 
by reviewers and determines whether the comments are positive or 
negative. In the sentence, “the battery life of this camera is too short,”
the comment is on the “battery life” and the opinion is negative. A struc-
tured summary will also be produced from the mining results. 

2. Comparative sentence and relation mining: Comparison is another 
type of evaluation, which directly compares one object against one or 
more other similar objects. For example, the following sentence com-
pares two cameras: “the battery life of camera A is much shorter than 

that of camera B.” We want to identify such sentences and extract com-
parative relations expressed in them.  

The second part of the chapter discusses opinion search and opinion

spam. Since our focus is on opinions on the Web, opinion search is natu-
rally relevant, and so is opinion spam. An opinion search system enables 
users to search for opinions on any object. Opinion spam refers to dishon-
est or malicious opinions aimed at promoting one’s own products and ser-
vices, and/or at damaging the reputations of those of one’s competitors. 
Detecting opinion spam is a challenging problem because for opinions ex-
pressed on the Web, the true identities of their authors are often unknown.

The research in opinion mining only began recently. Hence, this chapter 
should be treated as statements of problems and descriptions of current re-
search rather than a report of mature techniques for solving the problems. 
We expect major progresses to be made in the coming years.   

11.1 Sentiment Classification 

Given a set of evaluative texts D, a sentiment classifier classifies each 

document d D into one of the two classes, positive and negative. Posi-
tive means that d expresses a positive opinion. Negative means that d ex-
presses a negative opinion. For example, given some reviews of a movie, 
the system classifies them into positive reviews and negative reviews. 

The main application of sentiment classification is to give a quick de-
termination of the prevailing opinion on an object. The task is similar but 
also different from classic topic-based text classification, which classifies 
documents into predefined topic classes, e.g., politics, science, sports, etc. 
In topic-based classification, topic related words are important. However, 



11.1 Sentiment Classification      413 

in sentiment classification, topic-related words are unimportant. Instead, 
sentiment words that indicate positive or negative opinions are important, 
e.g., great, excellent, amazing, horrible, bad, worst, etc.   

The existing research in this area is mainly at the document-level, i.e., 
to classify each whole document as positive or negative (in some cases, the 
neutral class is used as well). One can also extend such classification to 
the sentence-level, i.e., to classify each sentence as expressing a positive, 
negative or neutral opinion. We discuss several approaches below.  

11.1.1  Classification Based on Sentiment Phrases 

This method performs classification based on positive and negative senti-
ment words and phrases contained in each evaluative text. The algorithm 
described here is based on the work of Turney [521], which is designed to 
classify customer reviews.  

This algorithm makes use of a natural language processing technique 
called part-of-speech (POS) tagging. The part-of-speech of a word is a 
linguistic category that is defined by its syntactic or morphological behav-
ior. Common POS categories in English grammar are: noun, verb, adjec-
tive, adverb, pronoun, preposition, conjunction and interjection. Then, 
there are many categories which arise from different forms of these catego-
ries. For example, a verb can be a verb in its base form, in its past tense, 
etc. In this book, we use the standard Penn Treebank POS Tags as shown 
in Table 11.1. POS tagging is the task of labeling (or tagging) each word in 
a sentence with its appropriate part of speech. For details on part-of-speech 
tagging, please refer to the report by Santorini [472]. The Penn Treebank 
site is at http://www.cis.upenn.edu/~treebank/home.html.

The algorithm given in [521] consists of three steps:  

Step 1: It extracts phrases containing adjectives or adverbs. The reason for 
doing this is that research has shown that adjectives and adverbs are 
good indicators of subjectivity and opinions. However, although an iso-
lated adjective may indicate subjectivity, there may be an insufficient 
context to determine its semantic (or opinion) orientation. For exam-
ple, the adjective “unpredictable” may have a negative orientation in an 
automotive review, in such a phrase as “unpredictable steering”, but it 
could have a positive orientation in a movie review, in a phrase such as 
“unpredictable plot”. Therefore, the algorithm extracts two consecutive 
words, where one member of the pair is an adjective/adverb and the 
other is a context word. 

Two consecutive words are extracted if their POS tags conform to any 
of the patterns in Table 11.2. For example, the pattern in line 2 means 



414      11 Opinion Mining

that two consecutive words are extracted if the first word is an adverb 
and the second word is an adjective, but the third word (which is not ex-
tracted) cannot be a noun. NNP and NNPS are avoided so that the names 
of the objects in the review cannot influence the classification. 

Table 11.2. Patterns of tags for extracting two-word phrases from reviews 

 First word  Second word  Third word 

(Not Extracted) 
1.  JJ  NN or NNS  anything 
2.  RB, RBR, or RBS JJ  not NN nor NNS 
3.  JJ  JJ not NN nor NNS 
4.  NN or NNS  JJ  not NN nor NNS 
5.  RB, RBR, or RBS VB, VBD, VBN, or VBG  anything 

Example 1: In the sentence “this camera produces beautiful pictures”,

“beautiful pictures” will be extracted as it satisfies the first pattern.  

Step 2: It estimates the semantic orientation of the extracted phrases using 
the pointwise mutual information measure given in Equation 1:  

. Table 11.1. Penn Treebank part-of-speech tags (excluding punctuation) 

Tag Description Tag Description 

CC Coordinating conjunction  PRP$ Possessive pronoun   

CD Cardinal number   RB Adverb   

DT Determiner RBR Adverb, comparative   

EX Existential there   RBS Adverb, superlative   

FW Foreign word   RP   Particle   

IN Preposition or subordi-
nating conjunction   

SYM Symbol   

JJ Adjective TO to   

JJR Adjective, comparative   UH   Interjection   

JJS Adjective, superlative   VB   Verb, base form   

LS List item marker   VBD Verb, past tense   

MD Modal   VBG  Verb, gerund or present participle   

NN Noun, singular or mass   VBN  Verb, past participle   

NNS Noun, plural   VBP  Verb, non-3rd person singular pre-
sent

NNP Proper noun, singular   VBZ  Verb, 3rd person singular present   

NNPS Proper noun, plural   WDT Wh-determiner   

PDT Predeterminer   WP Wh-pronoun   

POS Possessive ending   WP$  Possessive wh-pronoun   

PRP Personal pronoun   WRB Wh-adverb   



11.1 Sentiment Classification      415 

.
)Pr()Pr(

)Pr(
log),(

21

21
221

termterm

termterm
termtermPMI (1)

Here, Pr(term1 term2) is the co-occurrence probability of term1 and
term2, and Pr(term1)Pr(term2) gives the probability that the two terms co-

occur if they are statistically independent. The ratio between Pr(term1

term2) and Pr(term1)Pr(term2) is thus a measure of the degree of statisti-
cal dependence between them. The log of this ratio is the amount of in-
formation that we acquire about the presence of one of the words when 
we observe the other. 

The semantic/opinion orientation (SO) of a phrase is computed based 
on its association with the positive reference word “excellent” and its as-
sociation with the negative reference word “poor”:

SO(phrase) = PMI(phrase, “excellent”)  PMI(phrase, “poor”). (2)

The probabilities are calculated by issuing queries to a search engine and 
collecting the number of hits. For each search query, a search engine 
usually gives the number of relevant documents to the query, which is 
the number of hits. Thus, by searching the two terms together and sepa-
rately, we can estimate the probabilities in Equation 1. Turney [521] 
used the AltaVista search engine because it has a NEAR operator, which 
constrains the search to documents that contain the words within ten 
words of one another, in either order. Let hits(query) be the number of 
hits returned. Equation 2 can be rewritten as: 

.
)excellent""()"poor"  phrase(

)poor""()excellent""  phrase(
log)( 2

hitsNEARhits

hitsNEARhits
phraseSO (3)

To avoid division by zero, 0.01 is added to the hits.

Step 3: Given a review, the algorithm computes the average SO of all 
phrases in the review, and classifies the review as recommended if the 
average SO is positive, not recommended otherwise.  

Final classification accuracies on reviews from various domains range 
from 84% for automobile reviews to 66% for movie reviews.  

11.1.2  Classification Using Text Classification Methods 

The simplest approach to sentiment classification is to treat the problem as 
a topic-based text classification problem. Then, any text classification al-
gorithm can be employed, e.g., naïve Bayesian, SVM, kNN, etc.



416      11 Opinion Mining

The approach was experimented by Pang et al. [428] using movie re-
views of two classes, positive and negative. It was shown that using a uni-
gram (a bag of individual words) in classification performed well using ei-
ther naïve Bayesian or SVM. Test results using 700 positive reviews and 
700 negative reviews showed that these two classification algorithms 
achieved 81% and 82.9% accuracy respectively with 3-fold cross valida-
tion. However, neutral reviews were not used in this work, which made the 
problem easier. No stemming or stopword removal was applied.  

11.1.3  Classification Using a Score Function 

A custom score function for review sentiment classification was given by 
Dave et al. [122]. The algorithm consists of two steps: 

Step 1: It scores each term in the training set using the following equation,    

,
)'|Pr()|Pr(

)'|Pr()|Pr(
)(

CtCt

CtCt
tscore

ii

ii
i

(4)

where ti is a term and C is a class and C is its complement, i.e., not C,
and Pr(ti|C) is the conditional probability of term ti in class C. It is com-
puted by taking the number of times that a term ti occurs in class C re-
views and dividing it by the total number of terms in the reviews of class 
C. A term’s score is thus a measure of bias towards either class ranging 

from 1 and 1.
Step 2: To classify a new document di = t1…tn, the algorithm sums up the 

scores of all terms and uses the sign of the total to determine the class. 
That is, it uses the following equation for classification,   

otherwise,'

0)(
)(

C

devalC
dclass

i

i (5)

where

j

ji tscoredeval )()( . (6)

Experiments were conducted based on a large number of reviews (more 
than 13000) of seven types of products. The results showed that the bi-
grams (consecutive two words) and trigrams (consecutive three words) as 

terms gave (similar) best accuracies (84.6% 88.3%), on two different re-
view data sets. No stemming or stopword removal was applied.  

In this paper, the authors experimented with many alternative classifica-
tion techniques, e.g., naïve Bayesian, SVM, and several algorithms based 



11.2 Feature-Based Opinion Mining and Summarization      417 

on other score functions. They also tried some word substitution strategies 
to improve generalization, e.g., 

replace product names with a token (“_productname”); 

replace rare words with a token (“_unique”); 

replace category-specific words with a token (“_producttypeword”); 
replace numeric tokens with NUMBER.

Some linguistic modifications using WordNet, stemming, negation, and 
collocation were tested too. However, they were not helpful, and usually 
degraded the classification accuracy.  

In summary, the main advantage of document level sentiment classifica-
tion is that it provides a prevailing opinion on an object, topic or event. 
The main shortcomings of the document-level classification are: 

It does not give details on what people liked or disliked. In a typical 
evaluative text such as a review, the author usually writes specific as-
pects of an object that he/she likes or dislikes. The ability to extract such 
details is useful in practice.

It is not easily applicable to non-reviews, e.g., forum and blog postings, 
because although their main focus may not be evaluation or reviewing 
of a product, they may still contain a few opinion sentences. In such 
cases, we need to identify and extract opinion sentences.  

There are several variations of the algorithms discussed in this section 
(see Bibliographic Notes). Apart from these learning based methods, there 
are also manual approaches for specific applications. For example, Tong 
[517] reported a system that generates sentiment timelines. The system 
tracks online discussions about movies and displays a plot of the number 
of positive sentiment and negative sentiment messages (Y-axis) over time 
(X-axis). Messages are classified by matching specific phrases that indicate 
sentiments of the author towards the movie (e.g., “great acting”, “wonder-

ful visuals”, “uneven editing”, “highly recommend it”, and “it sucks”). The 
phrases were manually compiled and tagged as indicating positive or nega-
tive sentiments to form a lexicon. The lexicon is specific to the domain 
(e.g., movies) and must be built anew for each new domain. 

11.2 Feature-Based Opinion Mining and Summarization 

Although studying evaluative texts at the document level is useful in many 
cases, it leaves much to be desired. A positive evaluative text on a particu-
lar object does not mean that the author has positive opinions on every as-
pect of the object. Likewise, a negative evaluative text does not mean that 



418      11 Opinion Mining

the author dislikes everything about the object. For example, in a product 
review, the reviewer usually writes both positive and negative aspects of 
the product, although the general sentiment on the product could be posi-
tive or negative. To obtain such detailed aspects, we need to go to the sen-
tence level. Two tasks are apparent [245]:  

1. Identifying and extracting features of the product that the reviewers 
have expressed their opinions on, called product features. For instance, 
in the sentence “the picture quality of this camera is amazing,” the prod-
uct feature is “picture quality”.

2. Determining whether the opinions on the features are positive, negative 
or neutral. In the above sentence, the opinion on the feature “picture 

quality” is positive.

11.2.1 Problem Definition 

In general, the opinions can be expressed on anything, e.g., a product, an 
individual, an organization, an event, a topic, etc. We use the general term 
“object” to denote the entity that has been commented on. The object has a 
set of components (or parts) and also a set of attributes (or properties). 
Thus the object can be hierarchically decomposed according to the part-of

relationship, i.e., each component may also have its sub-components and 
so on. For example, a product (e.g., a car, a digital camera) can have dif-
ferent components, an event can have sub-events, a topic can have sub-
topics, etc. Formally, we have the following definition:  

Definition (object): An object O is an entity which can be a product, per-
son, event, organization, or topic. It is associated with a pair, O: (T, A),
where T is a hierarchy or taxonomy of components (or parts), sub-

components, and so on, and A is a set of attributes of O. Each compo-
nent has its own set of sub-components and attributes.  

Example 2: A particular brand of digital camera is an object. It has a set of 
components, e.g., lens, battery, view-finder, etc., and also a set of attrib-
utes, e.g., picture quality, size, weight, etc. The battery component also has 

its set of attributes, e.g., battery life, battery size, battery weight, etc.  

Essentially, an object is represented as a tree. The root is the object it-
self. Each non-root node is a component or sub-component of the object. 
Each link represents a part-of relationship. Each node is also associated 
with a set of attributes. An opinion can be expressed on any node and any 
attribute of the node.  



11.2 Feature-Based Opinion Mining and Summarization      419 

Example 3: Following Example 2, one can express an opinion on the 
camera (the root node), e.g., “I do not like this camera”, or on one of its at-
tributes, e.g., “the picture quality of this camera is poor”. Likewise, one can 
also express an opinion on one of the camera’s components, e.g., “the bat-

tery of this camera is bad”, or an opinion on the attribute of the compo-

nent, “the battery life of this camera is too short.” 

To simplify our discussion, we use the word “features” to represent 
both components and attributes, which allows us to omit the hierarchy. Us-
ing features for products is also quite common in practice. For an ordinary 
user, it is probably too complex to use a hierarchical representation of 
product features and opinions. We note that in this framework the object 
itself is also treated as a feature.  

Let the evaluative text (e.g., a product review) be r. In the most general 

case, r consists of a sequence of sentences r = s1, s2, …, sm .

Definition (explicit and implicit feature): If a feature f appears in evalua-
tive text r, it is called an explicit feature in r. If f does not appear in r
but is implied, it is called an implicit feature in r.

Example 4: “battery life” in the following sentence is an explicit feature: 

“The battery life of this camera is too short”.

“Size” is an implicit feature in the following sentence as it does not appear 
in the sentence but it is implied:  

“This camera is too large”.

Definition (opinion passage on a feature): The opinion passage on fea-
ture f of an object evaluated in r is a group of consecutive sentences in r
that expresses a positive or negative opinion on f.

It is common that a sequence of sentences (at least one) in an evaluative 
text together expresses an opinion on an object or a feature of the object. 
Also, it is possible that a single sentence expresses opinions on more than 
one feature:

“The picture quality is good, but the battery life is short”.

Most current research focuses on sentences, i.e., each passage consisting 
of a single sentence. Thus, in our subsequent discussion, we use sentences

and passages interchangeably.  

Definition (explicit and implicit opinion): An explicit opinion on feature 
f is a subjective sentence that directly expresses a positive or negative 
opinion. An implicit opinion on feature f is an objective sentence that 
implies a positive or negative opinion.  



420      11 Opinion Mining

Example 5: The following sentence expresses an explicit positive opinion:  

“The picture quality of this camera is amazing.”

The following sentence expresses an implicit negative opinion: 

“The earphone broke in two days.”

Although this sentence states an objective fact (assume it is true), it implic-

itly expresses a negative opinion on the earphone.  

Definition (opinion holder): The holder of a particular opinion is a per-
son or an organization that holds the opinion.  

In the case of product reviews, forum postings and blogs, opinion holders 
are usually the authors of the postings, although occasionally some authors 
cite or repeat the opinions of others. Opinion holders are more important in 
news articles because they often explicitly state the person or organization 
that holds a particular view. For example, the opinion holder in the sen-
tence “John expressed his disagreement on the treaty” is “John”.

We now put things together to define a model of an object and a set of 
opinions on the object. An object is represented with a finite set of fea-
tures, F = {f1, f2, …, fn}. Each feature fi in F can be expressed with a finite 
set of words or phrases Wi, which are synonyms. That is, we have a set of 
corresponding synonym sets W = {W1, W2, …, Wn} for the n features. 

Since each feature fi in F has a name (denoted by fi), then fi Wi. Each au-

thor or opinion holder j comments on a subset of the features Sj F. For 

each feature fk Sj that opinion holder j comments on, he/she chooses a 
word or phrase from Wk to describe the feature, and then expresses a posi-
tive or negative opinion on it.  

This simple model covers most but not all cases. For example, it does 
not cover the situation described in the following sentence: “the view-

finder and the lens of this camera are too close”, which expresses a nega-
tive opinion on the distance of the two components. We will follow this 
simplified model in the rest of this chapter.  

This model introduces three main practical problems. Given a collection 
of evaluative texts D as input, we have: 

Problem 1: Both F and W are unknown. Then, in opinion mining, we need 
to perform three tasks: 

Task 1: Identifying and extracting object features that have been com-

mented on in each evaluative text d D.
Task 2: Determining whether the opinions on the features are positive, 

negative or neutral.   



11.2 Feature-Based Opinion Mining and Summarization      421 

Task 3: Grouping synonyms of features, as different people may use dif-
ferent words or phrases to express the same feature. 

Problem 2: F is known but W is unknown. This is similar to Problem 1, 
but slightly easier. All the three tasks for Problem 1 still need to be per-
formed, but Task 3 becomes the problem of matching discovered fea-
tures with the set of given features F.

Problem 3: W is known (then F is also known). We only need to perform 
Task 2 above, namely, determining whether the opinions on the known 
features are positive, negative or neutral after all the sentences that con-
tain them are extracted (which is simple).  

Clearly, the first problem is the most difficult to solve. Problem 2 is 
slightly easier. Problem 3 is the easiest, but still realistic.  

Example 6: A cellular phone company wants to mine customer reviews on 
a few models of its phones. It is quite realistic to produce the feature set F
that the company is interested in and also the set of synonyms of each fea-
ture (although the set might not be complete). Then there is no need to per-

form Tasks 1 and 3 (which are very challenging problems).  

Output: The final output for each evaluative text d is a set of pairs. Each 
pair is denoted by (f, SO), where f is a feature and SO is the semantic or 
opinion orientation (positive or negative) expressed in d on feature f. We 
ignore neutral opinions in the output as they are not usually useful.  

Note that this model does not consider the strength of each opinion, i.e., 
whether the opinion is strongly negative (or positive) or weakly negative 
(or positive), but it can be added easily (see [548] for a related work). 

There are many ways to use the results. A simple way is to produce a 
feature-based summary of opinions on the object. We use an example to 
illustrate what that means.  

Example 7: Assume we summarize the reviews of a particular digital 
camera, digital_camera_1. The summary looks like that in Fig. 11.1.   

In Fig. 11.1, “picture quality” and (camera) “size” are the product fea-
tures. There are 123 reviews that express positive opinions about the pic-
ture quality, and only 6 that express negative opinions. The <individual re-

view sentences> link points to the specific sentences and/or the whole 
reviews that give positive or negative comments about the feature.  

With such a summary, the user can easily see how the existing custom-
ers feel about the digital camera. If he/she is very interested in a particular 
feature, he/she can drill down by following the <individual review sen-

tences> link to see why existing customers like it and/or what they are not 



422      11 Opinion Mining

satisfied with. The summary can also be visualized using a bar chart. Fig-
ure 11.2(A) shows the feature-based opinion summary of a digital camera. 

In the figure, the bars above the X-axis in the middle show the percent-
ages of positive opinions on various features (given at the top), and the 
bars below the X-axis show the percentages of negative opinions on the 
same features.   

Fig. 11.2. Visualization of feature-based opinion summary and comparison 

Digital_camera_1:  

 Feature: picture quality

  Positive:  123 <individual review sentences> 
  Negative: 6 <individual review sentences> 
 Feature: size

  Positive:  82       <individual review sentences> 
  Negative: 10 <individual review sentences> 
 … 

Fig. 11.1. An example of a feature-based summary of opinions

Picture  Battery Size WeightZoom positive

negative Digital Camera 1 

Picture  Battery Size WeightZoom positive

negative Digital Camera 1 Digital Camera 2

(A) Feature-based summary of opinions on a digital camera 

(B) Opinion comparison of two digital cameras 



11.2 Feature-Based Opinion Mining and Summarization      423 

Comparing the opinion summaries of a few competing products is even 
more interesting. Figure 11.2(B) shows a visual comparison of consumer 
opinions on two competing digital cameras. We can clearly see how con-
sumers view different features of each product. Digital camera 1 is clearly 
superior to digital camera 2. Specifically, most customers have negative 
opinions about the picture quality, battery and zoom of digital camera 2. 
However, on the same three features, customers are mostly positive about 
digital camera 1. Regarding size and weight, customers have similar opin-
ions on both cameras. Thus, the visualization enables users to clearly see 

how the cameras compare with each other along each feature dimension.

Below, we discuss four other important issues.  

Separation of Opinions on the Object itself and its Features: It is often 
useful to separate opinions on the object itself and opinions on the features 
of the object. The opinion on the object itself reflects the general sentiment 
of the author (or the opinion holder) on the object, which is what sentiment 
classification tries to discover at the document level.  

Granularity of Analysis: Let us go back to the general representation of 
an object with a component tree and each component with a set of attrib-
utes. We can study opinions at any level.  

At level 1: We identify opinions on the object itself and its attributes.  
At level 2: We identify opinions on the major components of the object, 

and also opinions on the attributes of the components.  

At other levels, similar tasks can be performed. However, in practice, 
analysis at level 1 and level 2 are usually sufficient.

Example 8: Given the following review of a camera (the object),  

“I like this camera. Its picture quality is amazing. However, the bat-

tery life is a little short”,

in the first sentence, the positive opinion is at level 1, i.e., a positive opin-
ion on the camera itself. The positive opinion on the picture quality in the 
second sentence is also at level 1 as “picture quality” is an attribute of the 
camera. The third sentence expresses a negative opinion on an attribute of 

the battery (at level 2), which is a component of the camera.  

Opinion Holder Identification: In some applications, it is useful to iden-
tify and extract opinion holders, i.e., persons or organizations that have ex-
pressed certain opinions. As we mentioned earlier, opinion holders are 
more useful for news articles and other types of formal documents, in 
which the person or organization that expressed an opinion is usually 
stated in the text explicitly. However, such holders need to be identified by 



424      11 Opinion Mining

the system. In the case of the user-generated content on the Web, the opin-
ion holders are often the authors of discussion posts, bloggers, or review-
ers, whose login ids are often known although their true identities in the 
real-world may be unknown. We will not discuss opinion holders in the 
chapter further due to our focus on the user-generated content on the Web. 
Interested readers, please refer to [276]. 

Opinioned Object Identification and Pronoun Resolution: In product 
reviews, the reviewed objects are usually known. However, this is not the 
case for opinions expressed in blogs and discussions. For example, in the 
following post “I have a Canon S50 camera purchased from Amazon. It 

takes great photos.”, two interesting questions can be asked: (1) what ob-
ject does the post praise? and (2) what “it” means in the second sentence? 
Clearly, we know that the post praises “Canon S50 camera”, which is the 
problem of opinioned object identification, and we also know that “it” 
here means “Canon S50 camera” too, which is the problem of pronoun

resolution. However, to automatically discover answers to the questions is 
a very challenging problem. So far, little work has been done.

11.2.2 Object Feature Extraction 

Current research on feature extraction is mainly carried out from online 
product reviews. We focus on such reviews in this subsection as well.  

It is a common practice for online merchants (e.g., amazon.com) to ask 
their customers to review the products that they have purchased. There are 
also dedicated review sites like epinions.com. There are three main review 
formats on the Web. Different review formats may need different tech-
niques to perform the feature extraction task.   

Format 1 Pros, cons and the detailed review: The reviewer is asked to 
describe pros and cons separately and also write a detailed review. An 
example of such a review is given in Fig. 11.3.   

Format 2 Pros and cons: The reviewer is asked to describe pros and 
cons separately, but there is not a separate detailed review as in format 
1. That is, the details are in pros and cons. An example of such a review 
is given in Fig. 11.4. 

Format 3 Free format: The reviewer can write freely, i.e., no separation 
of pros and cons. An example of such a review is given in Fig. 11.5. 

For formats 1 and 2, opinion (or semantic) orientations (positive or nega-
tive) of the features are known because pros and cons are separated. Only 
product features need to be identified. For format 3, we need to identify 
both product features and opinion orientations.  



11.2 Feature-Based Opinion Mining and Summarization      425 

In both formats 2 and 3, reviewers typically use full sentences. How-
ever, for format 1, pros and cons tend to be very brief. For example, in Fig. 
11.3, under pros, we have “Great photos, easy to use, take videos”, which 
are elaborated in the detailed review.  

Let us deal with pros and cons of format 1 first. The detailed reviews of 
format 1 are not used as they are elaborations of pros and cons. Analyzing 
short sentence segments in pros and cons produces more accurate results. 
Detailed reviews of format 1 are the same as reviews of format 3. 

11.2.3 Feature Extraction from Pros and Cons of Format 1 

We now describe a supervised pattern learning approach to extract product 
features from pros and cons in the reviews of format 1. These patterns are 

My SLR is on the shelf 

by camerafun4. Aug 09 ‘04 

Pros: Great photos, easy to use, very small 
Cons: Battery usage; included memory is stingy. 

I had never used a digital camera prior to purchasing this Canon A70. I 
have always used a SLR … Read the full review

Fig. 11.3. An example of a review of format 1. 

“It is a great digital still camera for this century” 

September 1 2004. 

Pros:
It’s small in size, and the rotatable lens is great. It’s very easy to use, and 
has fast response from the shutter. The LCD …  

Cons:  
It almost has no cons. It could be better if the LCD is bigger and it’s going 
to be best if the model is designed to a smaller size.  

Fig. 11.4. An example of a review of format 2. 

GREAT Camera., Jun 3, 2004  

Reviewer: jprice174 from Atlanta, Ga. 

I did a lot of research last year before I bought this camera... It kinda hurt 
to leave behind my beloved nikon 35mm SLR, but I was going to Italy, and 
I needed something smaller, and digital.  

The pictures coming out of this camera are amazing. The 'auto' feature 
takes great pictures most of the time. And with digital, you're not wasting 
film if the picture doesn't come out. … 

Fig. 11.5. An example of a review of format 3. 



426      11 Opinion Mining

generated from label sequential rules (LSR) (see Sect. 2.9.2). This 
method is based on the algorithm in [247, 347].   

A product feature can be expressed with a noun, adjective, verb or ad-
verb. The labels and their POS tags used in mining LSRs are: {$feature, 

NN}, {$feature, JJ}, {$feature, VB} and {$feature, RB}, where $feature de-
notes a feature to be extracted, and NN stands for noun, VB for verb, JJ for 
adjective, and RB for adverb. They represent both explicit features and 
implicit feature indicators. We call a word that indicates an implicit feature 
an implicit feature indicator. For example, in the sentence “this camera 

is too heavy”, “heavy” is an adjective and is an implicit feature indicator 
for feature “weight”.

The feature extraction technique is based on the following observation: 

Each sentence segment in pros and cons contains only one feature. Sen-
tence segments are separated by commas, periods, semi-colons, hy-
phens, ‘&’’s, ‘and’’s, ‘but’’s, etc.  

Example 9: Pros in Fig. 11.3 can be separated into three segments:  
great photos  photo
easy to use use
very small small size .

Cons in Fig. 11.3 can be separated into two segments: 

battery usage battery

included memory is stingy  memory

We can see that each segment describes a product feature, which is 
listed within . Notice that small  is an implicit feature indicator and 
size  is the implicit feature.  

One point to note is that an explicit feature may not be a noun or noun 
phrase. Verbs can be explicit features as well, e.g., “use” in “easy to use”.

In general, 60 70% of the features are explicit noun features. A small pro-

portion of explicit features are verbs. 20 30% of the features are implicit 
features represented by their indicators. Let us now describe the method.  

Given a set of reviews, this method consists of the following two steps:  

1. Training data preparation for LSR mining: It consists of 4 sub-steps: 

Part-Of-Speech (POS) tagging and sequence generation: For each 
sentence segment, the algorithm first performs POS tagging, and then 
produces a sequence. For example, the sentence segment,  

 “Included memory is stingy”.

is turned into a sequence with POS tags:  

{included, VB}{memory, NN}{is, VB}{stingy, JJ} .



11.2 Feature-Based Opinion Mining and Summarization      427 

Replace the actual feature words with {$feature, <tag>}, where $fea-

ture represents a feature. This replacement is necessary because dif-
ferent products have different features, and the replacement ensures 
that we can find general language patterns to extract any product fea-
ture. After replacement, the above example becomes:  

{included, VB}{$feature, NN}{is, VB}{stingy, JJ} .

Use an n-gram to produce shorter segments from long ones: For ex-
ample, the above sequence will generate two trigram sequences: 

{included, VB}{$feature, NN}{is, VB}
{$feature, NN}{is, VB}{stingy, JJ} .

 Trigrams are usually sufficient. The reason for using n-grams rather 
than full sentences is because most product features can be found 
based on local information and POS tags. Using long sentences tend 
to generate a large number of spurious rules. 

Perform word stemming: This reduces a word to its stem (see Sect. 
6.5.2).  

After the four-step pre-processing, the resulting sentence (trigram) seg-
ments are saved in a sequence database for label sequential rule mining. 
In this file, each line contains one processed sequence.  

2. Label sequential rule mining: A LSR mining system is applied to find 
all rules that involve a feature, i.e., $feature. An example rule is:

{easy, JJ }{to}{*, VB} {easy, JJ}{to}{$feature, VB} .

Note that both POS tags and words may appear in a rule. A suitable 
minimum confidence and minimum support should be used, which can 
be chosen based on experiments. The right-hand-side of the rule is also 
called a language pattern.

3. Feature extraction: The resulting language patterns are used to match 
each sentence segment in a new review to extract product features. That 
is, the word in the sentence segment that matches $feature in a language 
pattern is extracted. Three situations are considered in extraction: 

If a sentence segment satisfies multiple rules, we search for a match-
ing rule in the following order: {$feature, NN}, {$feature, JJ}, {$fea-

ture, VB} and {$feature, RB}. The reason for this ordering is that noun 
features appear more frequently than other types. For rules of the 
same tag, the rule with the highest confidence is used since higher 
confidence indicates higher predictive accuracy. 



428      11 Opinion Mining

For sentence segments that no rules apply, nouns or noun phrases 
produced by a POS tagger are extracted as features if such nouns or 
noun phrases exist.

For a sentence segment with only a single word (e.g., “heavy” and 
“big”), this pattern-based method does not apply. In such cases, the 
single words are treated as (implicit or explicit) features.  

After extraction, we need to deal with several other important problems:  

Mapping to Implicit Features: There are many types of implicit feature 
indicators. Adjectives are perhaps the most common type. Many adjectives 
modify or describe some specific attributes or properties of objects. For 
example, the adjective “heavy” usually describes the attribute “weight” of 
an object. “Beautiful” is normally used to describe (positively) the attribute 
“look” or “appearance” of an object. By no means, however, does this say 
that these adjectives only describe such attributes. Their exact meaning can 
be domain dependent. For example, “heavy” in the sentence “the traffic is 

heavy” does not describe the “weight” of the traffic.
One way to map indicator words to implicit features is to manually 

compile a list of such mappings during training data annotation, which can 
then be used in the same domain in the future. However, it is not clear 
whether this is an effective approach as little research has been done. 

Grouping Synonyms: It is common that people use different words or 
phrases to describe the same feature. For example, “photo” and “picture”
refer to the same feature in digital camera reviews. Identifying and group-
ing synonyms is essential for practical applications. Although WordNet 
[175] and other thesaurus dictionaries help to some extent, they are far 
from sufficient due to the fact that many synonyms are domain dependent. 
For example, “picture” and “movie” are synonyms in movie reviews. 
However, they are not synonyms in digital camera reviews as “picture” is 
more related to “photo” while “movie” refers to “video”.

Liu et al. [347] made an attempt using synonyms in WordNet. Carenini  
et al. [80] proposes a more sophisticated method based on several similar-
ity metrics that require the taxonomy of features to be given. The system 
merges each discovered feature to a feature node in the taxonomy. The 
similarity metrics are defined based on string similarity, synonyms and 
other distances measured using WordNet. Experimental results based on 
digital camera and DVD reviews show promising results. Clearly, many 
ideas and techniques described in Chap. 10 for information integration are 
applicable here.

Granularity of Features: In the sentence segment “great photos”, it is 
easy to decide that “photo” is the feature. However, in “battery usage”, we 



11.2 Feature-Based Opinion Mining and Summarization      429 

can use either “battery usage” or “battery” as the feature. As we discussed 
in Sect. 11.2.1, each object has a component/part tree and each component 
node has a set of attributes. In a practical application, we need to determine 
the right level of analysis. If it is too general, it may not be useful. If it is 
too specific, it may result in a large number of features and also make the 
extraction very difficult and inaccurate.

11.2.4 Feature Extraction from Reviews of Formats 2 and 3 

Pros and cons of format 1 mainly consist of short phrases and incomplete 
sentences. The reviews of formats 2 and 3 usually consist of complete sen-
tences. To extract features from such reviews, the above algorithm can also 
be applied. However, some preliminary experiments show that it is not ef-
fective because complete sentences are more complex and contain a large 
amount of irrelevant information. Below, we describe an unsupervised 
method for finding explicit features that are nouns and noun phrases. This 
method requires a large number of reviews, and consists of two steps:

1. Finding frequent nouns and noun phrases. Nouns and noun phrases (or 
groups) are identified by using a POS tagger. We then count their fre-
quency and only keep the frequent ones. A frequency threshold can be 
decided experimentally. The reason for using this approach is that most 
product features are nouns, and those nouns that are frequently talked 
about are usually genuine and important features. Irrelevant contents 
(see Fig. 11.5) in reviews are often diverse, i.e., they are quite different 
in different reviews. When people comment on product features, the vo-
cabulary that they use converges. Those nouns that are infrequent are 
likely to be non-features or less important features.    

2. Finding infrequent features by making use of sentiment words. Senti-

ment words (also called opinion words) are usually adjectives and ad-
verbs that express positive or negative opinions, e.g., great, amazing,
bad, and expensive. The idea is as follows: The same opinion word can 
be used to describe different objects. Opinion words that modify fre-
quent features can be used to find infrequent features. For example, 
“picture” is found to be a frequent feature, and we have the sentence, 

“The pictures are absolutely amazing.”

We also know that “amazing” is a positive opinion word (to be dis-
cussed in Sect. 11.2.5). Then “software” may also be extracted as a fea-
ture from the following sentence,  

“The software is amazing.”



430      11 Opinion Mining

because the two sentences follow the same language pattern and “soft-

ware” in the sentence is also a noun. 

This two-step approach is based on the work of Hu and Liu [245]. At 
the time this book was written, the shopping site Froogle of the search en-
gine Google implemented a method similar to step 1 of the algorithm. 
However, it does not restrict frequent terms to be nouns or noun phrases.  

The precision of step 1 of the above algorithm was improved by Pope-
scu and Etzioni in [447]. Their algorithm tries to remove those noun 
phrases that may not be product features. It evaluates each noun phrase by 
computing a PMI score between the phrase and meronymy discrimina-

tors associated with the product class, e.g., a scanner class. The meronymy 
discriminators for the scanner class are, “of scanner”, “scanner has”, 
“scanner comes with”, etc., which are used to find components or parts of 
scanners by searching on the Web (see [166] also). The PMI measure is a 
simplified version of the measure given in Sect. 11.1.1: 

,
)()(

)(
),(

dhitsfhits

dfhits
dfPMI (7)

where f is a candidate feature identified in step 1 and d is a discriminator. 
Web search is used to find the number of hits. The idea of this approach is 
clear. If the PMI value of a candidate feature is too low, it may not be a 
component of the product because f and d do not co-occur frequently. The 
algorithm also distinguishes components/parts from attributes/properties 
using WordNet’s is-a hierarchy (which enumerates different kinds of 
properties) and morphological cues (e.g., “-iness”, “-ity” suffixes). 

Finally, we note that many information extraction techniques are also 
applicable, e.g., conditional random fields (CRF) [298], hidden Markov 
models (HMM) [185], and many others. However, no comparative evalua-
tion of these methods on this problem has been reported so far.  

11.2.5 Opinion Orientation Classification 

For reviews of format 3, we need to classify each sentence that contains a 
product feature as positive, negative or neutral. This classification may 
also be needed for reviews of format 2 because although pros and cons are 
separated in format 2, some sentences containing features are neutral.  

We describe two main techniques below. The accuracy is usually rea-
sonable (greater than 80%) if the sentences are either positive or negative, 
but if neutral sentences are included, the accuracy often drops signifi-
cantly. Sentences containing negations also pose difficulties.  



11.2 Feature-Based Opinion Mining and Summarization      431 

1. Using sentiment words and phrases: As explained above, sentiment 
words and phrases are words and phrases that express positive or nega-
tive sentiments (or opinions). They are mostly adjectives and adverbs, 
but can be verbs and nouns too. Researchers have compiled sets of such 
words and phrases for adjectives, adverbs, verbs, and nouns respec-
tively. Each set is usually obtained through a bootstrapping process:  

Manually find a set of seed positive and negative words. Separate 
seed sets are prepared for adjectives, adverbs, verbs and nouns.  

Grow each of the seed set by iteratively searching for their synonyms 
and antonyms in WordNet until convergence, i.e., until no new words 
can be added to the set. Antonyms of positive (or negative) words will 
be added to the negative (or positive) set.  

Manually inspect the results to remove those incorrect words. Al-
though this step is time consuming, it is only an one-time effort.  

Apart from a set of opinion words, there are also idioms, which can be 
classified as positive, negative and neutral as well. Many language pat-
terns also indicate positive or negative sentiments. They can be manu-
ally compiled and/or discovered using pattern discovery methods.  

Using the final lists of positive and negative words, phrases, idioms 
and patterns, each sentence that contains product features can be classi-
fied as follows: Sentiment words and phrases in the sentence are identi-
fied first. A positive word or phrase is assigned a score of +1 and a 

negative word or phrase is assigned a score of 1. All the scores are then 
summed up. If the final total is positive, then the sentence is positive, 
otherwise it is negative. If a negation word is near a sentiment word, the 
opinion is reversed. A sentence that contains a “but” clause (sub-
sentence that starts with “but”, “however”, etc.) indicates a sentiment 
change for the feature in the clause.

This method is based on the techniques given by Hu and Liu [245], 
and Kim and Hovy [276]. In [447], Popescu and Etzioni proposed a 
more complex method, which makes use of syntactical dependencies 
produced by a parser. Yu and Hatzivassiloglou [584] presented a 
method similar to that in Sect. 11.1.1 but used a large number of seeds. 
Recall that Turney [521] used only two seeds (see Sect. 11.1.1), “excel-

lent” for positive and “poor” for negative. The sentence orientation is 
determined by a threshold of the average score of the words in the sen-
tence. It is not clear which method performs better because there is little 
comparative evaluation.  

Note that the opinion orientations of many words are domain and/or 
sentence context dependent. Such situations are usually hard to deal 
with. It can be easy in some cases. For example, “small” can be positive 



432      11 Opinion Mining

or negative. However, if there is a “too” before it, it normally indicates a 
negative sentiment, e.g., “this camera is too small for me”.

2. The methods described in Sect. 11.1 for sentiment classification are ap-
plicable here. Using supervised learning, we need to prepare a set of 
manually labeled positive, negative and neutral sentences as the training 
data. If sentiment words and phrases, idioms and patterns are used also 
as attributes, the classification results can be further improved. Sen-
tences containing negations and clauses starting with “but”, “however”, 
etc., need special handling since one part of the sentence may be posi-
tive and another part may be negative, e.g., “The pictures of this camera 

are great, but the camera itself is a bit too heavy.”

In summary, although many classification techniques have been proposed, 
little comparative study of these techniques has been reported. A promis-
ing approach is to combine these techniques to produce a better classifier.  

11.3 Comparative Sentence and Relation Mining 

Directly expressing positive or negative opinions on an object is only one 
form of evaluation. Comparing the object with some other similar objects 
is another. Comparison is perhaps a more convincing way of evaluation. 
For example, when a person says that something is good or bad, one often 
asks “compared to what?” Thus, one of the most important ways of evalu-
ating an object is to directly compare it with some other similar objects. 

Comparisons are related to but also different from typical opinions. 
They have different semantic meanings and different syntactic forms. 
Comparisons may be subjective or objective. For example, a typical opin-
ion sentence is “the picture quality of camera x is great.” A subjective 
comparison is “the picture quality of camera x is better than that of camera 

y.” An objective comparison is “camera x is 20 grams heavier than cam-

era y”, which may be a statement of a fact and may not have an implied 
opinion on which camera is better.  

In this section, we study the problem of identifying comparative sen-
tences and comparative relations (defined shortly) in text documents, e.g., 
consumer reviews, forum discussions and news articles. This problem is 
also challenging because although we can see that the above example sen-
tences all contain some indicators, i.e., “better” and “longer”, many sen-
tences that contain such words are not comparisons, e.g., “in the context of 

speed, faster means better”. Similarly, many sentences that do not contain 
such indicators are comparative sentences, e.g., “cellphone X has blue-

tooth, but cellphone Y does not,” and “Intel is way ahead of AMD.”



11.3 Comparative Sentence and Relation Mining      433 

11.3.1  Problem Definition 

A comparative sentence is a sentence that expresses a relation based on 
similarities or differences of more than one object. The comparison in a 
comparative sentence is usually expressed using the comparative or the 
superlative form of an adjective or adverb. The comparative is used to 
state that one thing has more (bigger, smaller) “value” than the other. The 
superlative is used to say that one thing has the most (the biggest, the 
smallest) “value”. The structure of a comparative consists normally of the 
stem of an adjective or adverb, plus the suffix -er, or the modifier “more”
or “less” before the adjective or adverb. For example, in “John is taller 

than James”, “taller” is the comparative form of the adjective “tall”. The 
structure of a superlative consists normally of the stem of an adjective or 
adverb, plus the suffix -est, or the modifier “most” or “least” before the 
adjective or adverb. In “John is the tallest in the class”, “tallest” is the 
superlative form of the adjective “tall”.

A comparison can be between two or more objects, groups of objects, 
one object and the rest of the objects. It can also be between an object and 
its previous or future versions.  

Types of Important Comparisons: We can classify comparisons into 
four main types. The first three types are gradable comparisons and the 
last one is the non-gradable comparison. The gradable types are defined 
based on the relationships of greater or less than, equal to, and greater or
less than all others.

1. Non-equal gradable comparisons: Relations of the type greater or less

than that express an ordering of some objects with regard to some of 
their features, e.g., “the Intel chip is faster than that of AMD”. This type 
also includes user preferences, e.g., “I prefer Intel to AMD”.

2. Equative comparisons: Relations of the type equal to that state two ob-
jects are equal with respect to some of their features, e.g., “the picture 

quality of camera A is as good as that of camera B”
3. Superlative comparisons: Relations of the type greater or less than all 

others that rank one object over all others, e.g., “the Intel chip is the 

fastest”.
4. Non-gradable comparisons: Sentences that compare features of two or 

more objects, but do not grade them. There are three main types:  

Object A is similar to or different from object B with regard to some 
features, e.g., “Coke tastes differently from Pepsi”.

Object A has feature f1, and object B has feature f2 (f1 and f2 are usu-
ally substitutable), e.g., “desktop PCs use external speakers but lap-

tops use internal speakers”.



434      11 Opinion Mining

Object A has feature f, but object B does not have, e.g., “cell phone A 

has an earphone, but cell phone B does not have”.

Gradable comparisons can be classified further into two types: adjectival 

comparisons and adverbial comparisons. Adjectival comparisons 
involve comparisons of degrees associated with adjectives, e.g., in “John is 

taller than Mary,” and “John is the tallest in the class”). Adverbial 
comparisons are similar but usually occur after verb phrases, e.g., “John 

runs faster than James,” and “John runs the fastest in the class”.

Given an evaluative text d, comparison mining consists of two tasks:

1. Identify comparative passages or sentences from d, and classify the 
identified comparative sentences into different types or classes.  

2. Extract comparative relations from the identified sentences. This in-
volves the extraction of entities and their features that are being com-
pared, and the comparative keywords. Relations in gradable adjectival 
comparisons can be expressed with 

 (<relationWord>, <features>, <entityS1>, <entityS2>, <type>)

where:
relationWord: The comparative keyword used to express a compara-

tive relation in a sentence. 
features: a set of features being compared. 
entityS1 and entityS2: Sets of entities being compared. Entities in enti-

tyS1 appear to the left of the relation word and entities in entityS2 
appear to the right of the relation word.  

type: non-equal gradable, equative or superlative.

Example 10: Consider the comparative sentence “Canon’s optics is bet-

ter than those of Sony and Nikon.” The extracted relation is: 

 (better, {optics}, {Canon}, {Sony, Nikon}, non-equal gradable).

We can also design relation representations for adverbial comparisons 
and non-gradable comparisons. In this section, however, we only focus on 
adjectival gradable comparisons as there is little study on relation extrac-
tion of the other types. For simplicity, we will use comparative sentences

and gradable comparative sentences interchangeably from now on. 

Finally, we note that there are other types of comparatives in linguistics 
that are used to express different types of relations. However, they are rela-
tively rare in evaluative texts and/or less useful in practice. For example, a 
meta-linguistic comparative compares the extent to which a single object 
has one property to a greater or lesser extent than another property, e.g., 
“Ronaldo is angrier than upset” (see [150, 274, 313, 393]). 



11.3 Comparative Sentence and Relation Mining      435 

11.3.2 Identification of Gradable Comparative Sentences  

This is a classification problem. A machine learning algorithm is applica-
ble to solve this problem. The main issue is what attributes to use. 

An interesting phenomenon about comparative sentences is that such a 
sentence usually has a comparative keyword. It is shown in [256] that us-
ing a set of 83 keywords, 98% of the comparative sentences (recall = 98%) 
can be identified with a precision of 32% using the authors’ data set. Let us 
see what the keywords are: 

1. Comparative adjectives (with the POS tag of JJR) and comparative 

adverbs (with the POS tag of RBR), e.g., more, less, better, longer and 
words ending with -er.

2. Superlative adjectives (with the POS tag of JJS) and superlative ad-

verbs (with the POS tag of RBS), e.g., most, least, best, tallest and 
words ending with -est.

3. Words like same, similar, differ and those used with equative as, e.g., 
same as, as well as, etc. 

4. Others, such as favor, beat, win, exceed, outperform, prefer, ahead,

than, superior, inferior, number one, up against, etc.

Note that those words with POS tags of JJR, RBR, JJS and RBS are not 
used as keywords themselves. Instead, their POS tags, JJR, RBR, JJS and 
RBS, are treated as four keywords only. There are four exceptions: more,
less, most, and least are treated as individual keywords because their us-
ages are diverse, and using them as individual keywords enables the sys-
tem to catch their individual usage patterns for classification.  

Since keywords alone are able to achieve a very high recall, the follow-
ing learning approach is used in [255] to improve the precision:  

Use the set of keywords to filter out those sentences that are unlikely to 
be comparative sentences (do not contain any keywords). The remaining 
set of sentences R forms the candidate set of comparative sentences.  

Work on R to improve the precision, i.e., to classify the sentences in R
into comparative and non-comparative sentences, and then into different 
types of comparative sentences.  

It is also observed in [255] that comparative sentences have strong patterns 
involving comparative keywords, which is not surprising. These patterns 
can be used as attributes in learning. To discover these patterns, class se-

quential rule (CSR) mining (see Sect. 2.9.3) was used. Each training ex-
ample used for mining CSRs is a pair (si, yi), where si is a sequence and yi

is a class, yi  {comparative, non-comparative}.



436      11 Opinion Mining

Training Data Preparation: The sequences in the training data are gener-
ated from sentences. Since we want to find patterns surrounding specific 
keywords, we use keywords as pivots to produce sequences.

Let the set of pivots be P. We generate the training sequence database as 
follows:

1. For each sentence, only words within the radius of r of the keyword 

pivot pi P are used to form a sequence. In [256], r is set to 3. Each 
pivot in a sentence forms a separate sequence. 

2. Each word is then replaced with its POS tag. The actual words are not 
used because the contents of sentences may be very different, but their 
underlying language patterns can be the same. Using POS tags allow us 
to capture content independent patterns. There is an exception. For each 
keyword (except those represented by JJR, RBR, JJS and RBS), the ac-
tual word and its POS tag are combined together to form a single item. 
The reason for this is that some keywords have multiple POS tags de-
pending on their use. Their specific usages can be important in deter-
mining whether a sentence is a comparative sentence or not. For exam-
ple, the keyword “more” can be a comparative adjective (more/JJR) or a 
comparative adverb (more/RBR) in a sentence.

3. A class is attached to each sequence according to whether the sentence 
is a comparative or non-comparative sentence.   

Example 11: Consider the comparative sentence “this/DT camera/NN 
has/VBZ significantly/RB more/JJR noise/NN at/IN iso/NN 100/CD than/IN 
the/DT nikon/NN 4500/CD.” It has the keywords “more” and “than”. The 
sequence involving “more” put in the training set is: 

( {NN}{VBZ}{RB}{more/JJR}{NN}{IN}{NN} , comparative)

CSR Generation: Using the training data, CSRs can be generated. Recall 
that a CSR is an implication of the form, X y, where X is a sequence and 
y is a class. Due to the fact that some keywords appear very frequently in 
the data and some appear rarely, multiple minimum supports are used in 
mining. The minimum item support for each keyword is computed with 

freq* , where  is set to 0.1 (freq is the actual frequency of its occurrence). 
See Sect. 2.7.2 or Sect. 2.8.2 in Chap. 2 for details on mining with multiple 
minimum supports. 

In addition to the automatically generated rules, some manually com-
piled rules are also used in [255, 256], which are more complex and diffi-
cult to generate by current rule mining techniques. 

Classifier Building: There are many ways to build classifiers using the 
discovered CSRs, we describe two methods:



11.3 Comparative Sentence and Relation Mining      437 

1. Treat all CSRs as a classifier. A CSR simply expresses the conditional 
probability that a sentence is a comparison if it contains the sequence 
pattern X. These rules can thus be used for classification. That is, for 
each test sentence, the algorithm finds all the rules satisfied by the sen-
tence, and then chooses the rule with the highest confidence to classify 
the sentence. This is basically the “use the strongest rule” method dis-
cussed in Sect. 3.5.1 in Chap. 3.  

1. Use CSRs as attributes to create a data set and then learn a naïve Bayes-
ian (NB) classifier (or any other types of classifiers) (see Sect. 3.5.2 in 
Chap. 3). The data set uses the following attribute set:  

Attribute Set =  {X | X is the sequential pattern in CSR X y}

{Z | Z is the pattern in a manual rule Z y}.

The class is not used but only the sequence pattern X (or Z) of each rule. 
The idea is that these patterns are predictive of the classes. A rule’s pre-
dictability is indicated by its confidence. The minimum confidence of
60% is used in [255].  

Each sentence forms an example in the training data. If the sentence 
has a particular pattern in the attribute set, the corresponding attribute 
value is 1, and is 0 otherwise. Using the resulting data, it is straightfor-
ward to perform NB learning. Other learning methods can be used as 
well, but according to [255], NB seems to perform better.  

Classify Comparative Sentences into Three Types: This step classifies 
comparative sentences obtained from the last step into one of the three 
types or classes, non-equal gradable, equative, and superlative. For this 
task, the keywords alone are already sufficient. That is, we use the set of 
keywords as the attribute set for machine learning. If the sentence has a 
particular keyword in the attribute set, the corresponding attribute value is 
1, and otherwise it is 0. SVM gives the best results in this case. 

11.3.3  Extraction of Comparative Relations  

We now discuss how to extract relation entries/items. Label sequential 
rules are again used for this task. The algorithm presented below is based 
on the work in [256], which makes the following assumptions:  

1. There is only one relation in a sentence. In practice, this is violated only 
in a very small number of cases. 

2. Entities or features are nouns (includes nouns, plural nouns and proper 
nouns) and pronouns. These cover most cases. However, a feature can 
sometimes be a noun used in its verb form or some action described as a 



438      11 Opinion Mining

verb (e.g., “Intel costs more”; “costs” is a verb and a feature). Such 
comparisons are adverbial comparisons and are not considered in [256].   

Sequence Data Generation: A sequence database for mining is created as 
follows: Since we are interested in predicting and extracting items repre-
senting entityS1 (denoted by $entityS1), entityS2 (denoted by $entityS2),
and features (denoted by $feature), which are all called labels, we first 
manually mark/label such words in each sentence in the training data. For 
example, in the sentence “Intel/NNP is/VBZ better/JJR than/IN amd/NN”,
the proper noun “Intel” is labeled with $entityS1, and the noun “amd” is 
labeled with $entityS2. The two labels are then used as pivots to generate 
sequence data. For every occurrence of a label in a sentence, a separate se-
quence is created and put in the sequence database. A radius of 4 is used in 
[256]. The following position words are also added to keep track of the 
distance between two items in a generated pattern:  

1. Distance words = {l1, l2, l3, l4, r1, r2, r3, r4}, where li means distance 
of i to the left of the pivot, and ri means the distance of i to the right of 
pivot.

2. Special words #start and #end are used to mark the start and the end of a 
sentence.

Example 12: The comparative sentence “Canon/NNP has/VBZ better/JJR 

optics/NNS than/IN Nikon/NNP” has $entityS1 “Canon”, $feature “optics”
and $entityS2 “Nikon”. The three sequences corresponding to the two enti-
ties and one feature put in the database are: 

{#start}{l1}{$entityS1, NNP}{r1}{has, VBZ}{r2}{better, JJR} 
{r3}{$feature, NNS}{r4}{thanIN}

{#start}{l4}{$entityS1, NNP}{l3}{has, VBZ}{l2}{better, JJR} {l1}
{$feature, NNS}{r1}{thanIN}{r2}{entityS2, NNP}{r3} {#end}

{has, VBZ}{l4}{better, JJR}{l3}{$feature, NNS}{l2}{thanIN} 
{l1}{$entityS2, NNP}{r1}{#end} .

The keyword “than” is merged with its POS tag to form a single item. 

LSR Generation: After the sequence database is built, a rule mining sys-
tem is applied to generate label sequential rules. Note that only those rules 
that contain one or more labels (i.e., $entityS1, $entityS2, and $feature)
will be generated. An example of a LSR rule is as follows 

Rule 1: {*, NN}{VBZ}{JJR}{thanIN}{*, NN}

{$entityS1, NN}{VBZ}{JJR}{thanIN}{$entityS2, NN} .

Relation Item Extraction: The generated LSRs are used to extract rela-
tion items from each input (or test) sentence. One strategy is to use all the 



11.4 Opinion Search      439 

rules to match the sentence and to extract the relation items using the rule 
with the highest confidence. For example, the above rule will label and ex-
tract “coke” as entityS1, and “pepsi” as entityS2 from the following sen-
tence:

{coke, NN}{is, VBZ}{definitely, RB}{better, JJR}{thanIN}{pepsi, NN} .

There is no feature in this sentence. The relationWord is simply the key-
word that identifies the sentence as a comparative sentence. In this case, it 
is “better.” A similar but more complex method is used in [256]. 

Again, many other methods can also be applied to the extraction, e.g., 
conditional random fields, hidden Markov models, and others. Results in 
[256] show that the LSR-based method outperforms conditional random 
fields. Further research and more comprehensive evaluations are needed to 
assess the strengths and weaknesses of these methods. 

11.4 Opinion Search 

Like the general Web search, one can also crawl the user-generated content 
on the Web and provide an opinion search service. The objective is to en-
able users to search for opinions on any object. Let us look at some typical 
opinion search queries: 

1. Search for opinions on a particular object or feature of an object, e.g., 
customer opinions on a digital camera or the picture quality of a digital 
camera, or public opinions on a political topic. Recall that the object can 
be a product, organization, topic, etc.  

2. Search for opinions of a person or organization (i.e., opinion holder) on 
a particular object or feature of the object. For example, one may search 
for Bill Clinton’s opinion on abortion or a particular aspect of it. This 
type of search is particularly relevant to news documents, where indi-
viduals or organizations who express opinions are explicitly stated. In 
the user-generated content on the Web, the opinions are mostly ex-
pressed by authors of the postings. 

For the first type of queries, the user may simply give the name of the ob-
ject and/or some features of the object. For the second type of queries, the 
user may give the name of the opinion holder and also the name of the ob-
ject. Clearly, it is not appropriate to simply apply keyword matching for ei-
ther type of queries because a document containing the query words may 
not have opinions. For example, many discussion and blog posts do not 
contain opinions, but only questions and answers on some objects. Opin-
ionated documents or sentences need to be identified before search is per-



440      11 Opinion Mining

formed. Thus, the simplest form of opinion search can be keyword-based 
search applied to the identified opinionated documents/sentences.  

As for ranking, traditional Web search engines rank Web pages based 
on authority and relevance scores. The basic premise is that the top ranked 
pages (ideally the first page) contain sufficient information to satisfy the 
user’s information need. This may be fine for the second type of queries 
because the opinion holder usually has only one opinion on the search ob-
ject, and the opinion is usually contained in a single document or page (in 
some cases, using a general search engine with an appropriate set of key-
words may be sufficient to find answers for such queries). However, for 
the first type of opinion queries, the top ranked documents only represent 
the opinions of a few persons. Therefore, they need to reflect the natural 
distribution of positive and negative sentiments of the whole population. 
Moreover, in many cases, opinionated documents are very long (e.g., re-
views). It is hard for the user to read many of them in order to obtain a 
complete picture of the prevailing sentiments. Some form of summary of 
opinions is desirable, which can be either a simple rating average of re-
views and proportions of positive and negative opinions, or a sophisticated 
feature-based summary as we discussed earlier. To make it even easier for 
the user, two rankings may be produced, one for positive opinions and one 
for negative opinions. 

Providing a feature-based summary for each search query is an ideal so-
lution. An analogy can be drawn from traditional surveys or opinion polls. 
An opinionated document is analogous to a filled survey form. Once all or 
a sufficient number of survey forms are collected, some analysts will ana-
lyze them to produce a survey summary, which is usually in the form of a 
bar or pie chart. One seldom shows all the filled survey forms to users 
(e.g., the management team of an organization or the general public) and 
asks them to read everything in order to draw their own conclusions. How-
ever, automatically generating a feature-based summary for each search 
object (or query) is a very challenging problem. To build a practical search 
system, some intermediate solution based on Problem 2 and 3 in Sect. 
11.2.1 may be more appropriate.  

Opinions also have a temporal dimension. For example, the opinions of 
people on a particular object, e.g., a product or a topic, may change over 
time. Displaying the changing trend of sentiments along the time axis can 
be very useful in many applications.  

Finally, like opinion search, comparison search will be useful as well. 
For example, when you want to register for a free email account, you most 
probably want to know which email system is best for you, e.g., hotmail, 
gmail or Yahoo! mail. Wouldn’t it be nice if you can find comparisons of 



11.5 Opinion Spam      441 

features of these email systems from existing users by issuing a search 
query “hotmail vs. gmail vs. yahoo mail.”?  

11.5 Opinion Spam 

In Sect. 6.10, we discussed Web spam, which refers to the use of 
“illegitimate means” to boost the search rank position of some target Web 
pages. The reason for spamming is because of the economic and/or 
publicity value of the rank position of a page returned by a search engine. 
In the context of opinions on the Web, the problem is similar. It has 
become a common practice for people to find and to read opinions on the 
Web for many purposes. For example, if one wants to buy a product, one 
typically goes to a merchant or review site (e.g., amazon.com) to read 
some reviews of existing users of the product. If one sees many positive 
reviews of the product, one is very likely to buy the product. On the 
contrary, if one sees many negative reviews, he/she will most likely choose 
another product. Positive opinions can result in significant financial gains 
and/or fames for organizations and individuals. This, unfortunately, gives 
good incentives for opinion spam, which refers to human activities (e.g., 
write spam reviews) that try to deliberately mislead readers or automated 
opinion mining systems by giving undeserving positive opinions to some 
target objects in order to promote the objects and/or by giving unjust or 
false negative opinions on some other objects in order to damage their 
reputation. In this section, we use customer reviews of products as an 
example to study opinion spam on the Web. Most of the analyses are also 
applicable to opinions expressed in other forms of user-generated contents, 
e.g., forum postings, group discussions, and blogs.  

11.5.1  Objectives and Actions of Opinion Spamming 

As we indicated above, there are two main objectives for writing spam re-
views:

1. To promote some target objects, e.g., one’s own products.  
2. To damage the reputation of some other target objects, e.g., products of 

one’s competitors.  

In certain cases, the spammer may want to achieve both objectives, while 
in others, he/she only aims to achieve one of them because either he/she 
does not have an object to promote or there is no competition. Another ob-
jective is also possible but may be rare. That is, the spammer writes some 



442      11 Opinion Mining

irrelevant information or false information in order to annoy readers and to 
fool automated opinion mining systems.  

To achieve the above objectives, the spammer usually takes both or one 
of the actions below: 

Write undeserving positive reviews for the target objects in order to 
promote them. We call such spam reviews hype spam.

Write unfair or malicious negative reviews for the target objects to dam-
age their reputation. We call such spam review defaming spam.

11.5.2 Types of Spam and Spammers 

Table 11.3 below gives a simplified view of spam reviews. Spam reviews 
in regions 1, 3 and 5 are typically written by owners or manufacturers of 
the product or persons who have direct economic or other interests in the 
product. Their main goal is to promote the product. Although opinions ex-
pressed in reviews of region 1 may be true, reviewers do not announce 
their conflict of interests. 

Spam reviews in regions 2, 4, and 6 are likely to be written by competi-
tors, who give false information in order to damage the reputation of the 
product. Although opinions in reviews of region 4 may be true, reviewers 
do not announce their conflict of interests and may have malicious inten-
sions.

Table 11.3. Spam reviews vs. product quality 

Hype spam review Defaming spam review 

Good quality product 1 2

Poor quality product 3 4

In-between good and poor 
quality product

5 6 

Clearly, spam reviews in region 1 and 4 are not so damaging, while 
spam reviews in regions 2, 3, 5 and 6 are very harmful. Thus, spam detec-
tion techniques should focus on identifying reviews in these regions.  

Manual and Automated Spam: Spam reviews may be manually written 
or automatically generated. Writing spam reviews manually is not a simple 
task if one wants to spam on a product at many review sites and write them 
differently to avoid being detected by methods that catch near duplicate 
reviews. Using some language templates, it is also possible to automati-
cally generate many different variations of the same review. 



11.5 Opinion Spam      443 

Individual Spammers and Group Spammers: A spammer may act indi-
vidually (e.g., the author of a book) or as a member of a group (e.g., a 
group of employees of a company).  

Individual spammers: In this case, a spammer, who does not work with 
anyone else, writes spam reviews. The spammer may register at a review 
site as a single user, or as “many users” using different user-ids. He/she 
can also register at multiple review sites and write spam reviews.  

Group spammers: A group of spammers works collaboratively to promote 
a target object and/or to damage the reputation of another object. They 
may also register at multiple sites and spam at these sites. Group spam 
can be very damaging because they may take control of the sentiments 
on the product and completely mislead potential customers. 

11.5.3 Hiding Techniques 

In order to avoid being detected, spammers may take a variety of precau-
tions. We study individual and group of spammers separately. The lists are 
by no means exhaustive and should be considered as just examples. 

An Individual Spammer 

1. The spammer builds up reputation by reviewing other products in the 
same or different categories/brands that he/she does not care about and 
give them agreeable ratings and reasonable reviews. Then, he/she be-
comes a trustworthy reviewer. However, he/she may write spam reviews 
on the products that he/she really cares about. This hiding method is 
useful because some sites rank reviewers based on their reviews that are 
found helpful by readers, e.g., amazon.com. Some sites also have trust 
systems that allow readers to assign trust scores to reviewers.  

2. The spammer registers multiple times at a site using different user-ids 
and write multiple spam reviews under these user-ids so that their re-
views or ratings will not appear as outliers. The spammer may even use 
different machines to avoid being detected by server log based detection 
methods that can compare IP addresses of reviewers (discussed below).   

3. The spammer gives a reasonably high rating but write a critical (nega-
tive) review. This may fool detection methods that find outliers based on 
ratings alone. Yet, automated review mining systems will pick up all the 
negative sentiments in the actual review content.  

4. Spammers write either only positive reviews on his/her own products or 
only negative reviews on the products of his/her competitors, but not 
both. This is to hide from spam detection methods that compare one’s 
reviews on competing products from different brands.   



444      11 Opinion Mining

A Group of Spammers 

1. Every member of the group reviews the same product to lower the rating 
deviation.

2. Every member of the group writes a review roughly at the time when 
the product is launched in order to take control of the product. It is gen-
erally not a good idea to write many spam reviews at the same time after 
many reviews have been written by others because a spike will appear, 
which can be easily detected.  

3. Members of the group write reviews at random or irregular intervals to 
hide spikes.

4. If the group is sufficiently large, it may be divided into sub-groups so 
that each sub-group can spam at different web sites (instead of only 
spam at the same site) to avoid being detected by methods that compare 
average ratings and content similarities of reviews from different sites. 

11.5.4 Spam Detection 

So far, little study has been done on opinion spam detection. This sub-
section outlines some possible approaches. We note that each individual 
technique below may not be able to reliably detect spam reviews, but it can 
be treated as a spam indicator. A holistic approach that combines all 
evidences is likely to be effective. One possible combination method is to 
treat spam detection as a classification problem. All the individual methods 
simply compute spam evidences which can be put in a data set from which 
a spam classifier can be learned. For this approach to work, a set of re-
views needs to be manually labeled for learning. The resulting classifier 
can be used to classify each new review as a spam review or not one. 

Review Centric Spam Detection: In this approach, spam detection is 
based only on reviews. A review has two main parts: rating and content.  

Compare content similarity: In order to have the maximum impact, a 
spammer may write multiple reviews on the same product (using differ-
ent user-ids) or multiple products of the same brand. He/she may also 
write reviews at multiple review sites. However, for a single spammer to 
write multiple reviews that look very different is not an easy task. Thus, 
some spammers simply use the same review or slight variations of the 
same review. In a recent study of reviews from amazon.com, it was 
found that some spammers were so lazy that they simply copied the 
same review and pasted it for many different products of the same brand. 
Techniques that can detect near duplicate documents are useful here (see 
Sect. 6.5.5). For automatically generated spam reviews based on lan-



11.5 Opinion Spam      445 

guage templates, sophisticated pattern mining methods may be needed to 
detect them.  

Detect rating and content outliers: If we assume that reviews of a product 
contain only a very small proportion of spam, we can detect possible 
spam activities based on rating deviations, especially for reviews in re-
gion 2 and 3, because they tend to be outliers. For reviews in regions 5 
and 6, this method may not be effective.   

If a product has a large proportion of spam reviews, it is hard to detect 
them based on review ratings, even though each spammer may act inde-
pendently, because they are no longer outliers. In this case, we may need 
to employ reviewer centric and server centric spam detection methods 
below. This case is similar to group spam, which is also hard to detect 
based on content alone because the spam reviews are written by different 
members of the group and there are a large number of them. Hence, their 
reviews are not expected to be outliers. However, members of the group 
may be detected based on reviewer centric detection methods and server 
centric detection methods. The following methods are also helpful.  

Compare average ratings from multiple sites: This method is useful to ac-
cess the level of spam activities from a site if only a small number of re-
view sites are spammed. For example, if the averages rating at many re-
view sites for a product are quite high but at one site it is quite low, this 
is an indication that there may be some group spam activities going on.  

Detect rating spikes: This method looks at the review ratings (or contents) 
from the time series point of view. If a number of reviews with similar 
ratings come roughly at the same time, a spike will appear which indi-
cates a possible group spam.  

Reviewer Centric Spam Detection: In this approach, “unusual” behaviors 
of reviewers are exploited for spam detection. It is assumed that all the re-
views of each reviewer at a particular site are known. Most review sites 
provide such information, e.g., amazon.com, or such information can be 
found by matching user-ids.  

Watch early reviewers: Spammers are often the first few reviewers to re-
view a product because earlier reviews tend to have a bigger impact. 
Their ratings for each product are in one of the two extremes, either very 
high or very low. They may do this consistently for a number of products 
of the same brand.  

Detect early remedial actions: For a given product, as soon as someone 
writes a (or the first) negative review to a product, the spammer gives a 
positive review just after it, or vice versa.

Compare review ratings of the same reviewer on products from different 

brands: A spammer often writes very positive reviews for products of 



446      11 Opinion Mining

one brand (to promote the product) and very negative reviews for similar 
products of another brand. A rating (or content) comparison will show 
discrepancies. If some of the ratings also deviate a great deal from the 
average ratings of the products, this is a good indicator of possible spam.  

Compare review times: A spammer may review a few products from dif-
ferent brands at roughly the same time. Such behaviors are unusual for a 
normal reviewer.  

As we mentioned above, detecting a group of spammers is difficult. 
However, we can reduce their negative impact by detecting each individual 
member in the group using the above and below methods.  

Server centric spam detection: The server log at the review site can be 
helpful in spam detection as well. If a single person registers multiple 
times at a Web site having the same IP address, and the person also writes 
multiple reviews for the same product or even different products using dif-
ferent user-ids, it is fairly certain that the person is a spammer. Using the 
server log may also detect some group spam activities. For example, if 
most good reviews of a product are from a particular region where the 
company that produces the product is located, it is a good indication that 
these are likely spam. 

As more and more people and organizations are using opinions on the 
Web for decision making, spammers have more and more incentives to ex-
press false sentiments in product reviews, discussions and blogs. To ensure 
the quality of information provided by an opinion mining and/or search 
system, spam detection is a critical task. Without effective detection, opin-
ions on the Web may become useless. This section analyzed various as-
pects of opinion spam and outlined some possible detection methods. This 
may just be the beginning of a long journey of the “arms race” between 
spam and detection of spam.  

Bibliographic Notes 

Opinion mining received a great deal of attention recently due to the avail-
ability of a huge volume of online documents and user-generated content 
on the Web, e.g., reviews, forum discussions, and blogs. The problem is 
intellectually challenging, and also practically useful. The most widely 
studied sub-problem is sentiment classification, which classifies evaluative 
texts or sentences as positive, negative, or neutral. Representative works 
on classification at the document level include those by Turney [521], 
Pang et al. [428], and Dave et al. [122]. They have been discussed in this 



12  Web Usage Mining 

With the continued growth and proliferation of e-commerce, Web services, 

and Web-based information systems, the volumes of clickstream and user 

data collected by Web-based organizations in their daily operations has 

reached astronomical proportions. Analyzing such data can help these or-

ganizations determine the life-time value of clients, design cross-marketing 

strategies across products and services, evaluate the effectiveness of pro-

motional campaigns, optimize the functionality of Web-based applications, 

provide more personalized content to visitors, and find the most effective 

logical structure for their Web space. This type of analysis involves the 

automatic discovery of meaningful patterns and relationships from a large 

collection of primarily semi-structured data, often stored in Web and ap-

plications server access logs, as well as in related operational data sources. 

Web usage mining refers to the automatic discovery and analysis of 

patterns in clickstream and associated data collected or generated as a re-

sult of user interactions with Web resources on one or more Web sites 

[114, 387, 505]. The goal is to capture, model, and analyze the behavioral 

patterns and profiles of users interacting with a Web site. The discovered 

patterns are usually represented as collections of pages, objects, or re-

sources that are frequently accessed by groups of users with common 

needs or interests.

Following the standard data mining process [173], the overall Web us-

age mining process can be divided into three inter-dependent stages: data 

collection and pre-processing, pattern discovery, and pattern analysis. In 

the pre-processing stage, the clickstream data is cleaned and partitioned 

into a set of user transactions representing the activities of each user during 

different visits to the site. Other sources of knowledge such as the site con-

tent or structure, as well as semantic domain knowledge from site ontolo-

gies (such as product catalogs or concept hierarchies), may also be used 

in pre-processing or to enhance user transaction data. In the pattern discov-

ery stage, statistical, database, and machine learning operations are per-

formed to obtain hidden patterns reflecting the typical behavior of users, as 

well as summary statistics on Web resources, sessions, and users. In the fi-

nal stage of the process, the discovered patterns and statistics are further 

processed, filtered, possibly resulting in aggregate user models that can be 

By Bamshad Mobasher



450      12  Web Usage Mining

used as input to applications such as recommendation engines, visualiza-

tion tools, and Web analytics and report generation tools. The overall 

process is depicted in Fig. 12.1.  

In the remainder of this chapter, we provide a detailed examination of 

Web usage mining as a process, and discuss the relevant concepts and 

techniques commonly used in all the various stages mentioned above. 

12.1 Data Collection and Pre-Processing 

An important task in any data mining application is the creation of a suit-

able target data set to which data mining and statistical algorithms can be 

applied. This is particularly important in Web usage mining due to the 

characteristics of clickstream data and its relationship to other related data 

collected from multiple sources and across multiple channels. The data 

preparation process is often the most time consuming and computationally 

intensive step in the Web usage mining process, and often requires the use 

of special algorithms and heuristics not commonly employed in other do-

mains. This process is critical to the successful extraction of useful patterns 

Fig. 12.1. The Web usage mining process 



12.1 Data Collection and Pre-Processing      451 

from the data. The process may involve pre-processing the original data, 

integrating data from multiple sources, and transforming the integrated 

data into a form suitable for input into specific data mining operations. 

Collectively, we refer to this process as data preparation.

Much of the research and practice in usage data preparation has been fo-

cused on pre-processing and integrating these data sources for different 

analysis. Usage data preparation presents a number of unique challenges 

which have led to a variety of algorithms and heuristic techniques for pre-

processing tasks such as data fusion and cleaning, user and session identi-

fication, pageview identification [115]. The successful application of data 

mining techniques to Web usage data is highly dependent on the correct 

application of the pre-processing tasks. Furthermore, in the context of e-

Fig. 12.2. Steps in data preparation for Web usage mining. 



452      12  Web Usage Mining

commerce data analysis, these techniques have been extended to allow for 

the discovery of important and insightful user and site metrics [286]. 

Figure 12.2 provides a summary of the primary tasks and elements in 

usage data pre-processing. We begin by providing a summary of data types 

commonly used in Web usage mining and then provide a brief discussion 

of some of the primary data preparation tasks. 

12.1.1 Sources and Types of Data 

The primary data sources used in Web usage mining are the server log

files, which include Web server access logs and application server logs.

Additional data sources that are also essential for both data preparation and 

pattern discovery include the site files and meta-data, operational data-

bases, application templates, and domain knowledge. In some cases and 

for some users, additional data may be available due to client-side or 

proxy-level (Internet Service Provider) data collection, as well as from ex-

ternal clickstream or demographic data sources such as those provided by 

data aggregation services from ComScore (www.comscore.com), NetRat-

ings (www.nielsen-netratings.com), and Acxiom (www.acxiom.com).

The data obtained through various sources can be categorized into four 

primary groups [115, 505].  

Usage Data: The log data collected automatically by the Web and applica-

tion servers represents the fine-grained navigational behavior of visitors. It 

is the primary source of data in Web usage mining. Each hit against the 

server, corresponding to an HTTP request, generates a single entry in the 

server access logs. Each log entry (depending on the log format) may con-

tain fields identifying the time and date of the request, the IP address of the 

client, the resource requested, possible parameters used in invoking a Web 

application, status of the request, HTTP method used, the user agent 

(browser and operating system type and version), the referring Web re-

source, and, if available, client-side cookies which uniquely identify a re-

peat visitor.  A typical example of a server access log is depicted in Fig. 

12.3, in which six partial log entries are shown. The user IP addresses in 

the log entries have been changed to protect privacy. 

For example, log entry 1 shows a user with IP address “1.2.3.4” access-

ing a resource: “/classes/cs589/papers.html” on the server (maya.cs.

depaul.edu). The browser type and version, as well as operating system in-

formation on the client machine are captured in the agent field of the entry. 

Finally, the referrer field indicates that the user came to this location from 

an outside source: “http://dataminingresources.blogspot.com/”. The next 

log entry shows that this user has navigated from “papers.html” (as re-



12.1 Data Collection and Pre-Processing      453 

flected in the referrer field of entry 2) to access another resource: 

“/classes/cs589/papers/cms-tai.pdf”. Log entry 3 shows a user who has ar-

rived at the resource “/classes/ds575/papers/hyperlink.pdf” by doing a 

search on Google using keyword query: “hyperlink analysis for the web 

survey”. Finally, entries 4 6 all correspond to a single click-through by a 

user who has accessed the resource “/classes/cs480/announce.html”. En-

tries 5 and 6 are images embedded in the file “announce.html” and thus 

two additional HTTP request are registered as hits in the server log corre-

sponding to these images. 

Depending on the goals of the analysis, this data needs to be trans-

formed and aggregated at different levels of abstraction. In Web usage 

mining, the most basic level of data abstraction is that of a pageview. A 

pageview is an aggregate representation of a collection of Web objects 

contributing to the display on a user’s browser resulting from a single user 

action (such as a click-through). Conceptually, each pageview can be 

viewed as a collection of Web objects or resources representing a specific 

“user event,” e.g., reading an article, viewing a product page, or adding a 

product to the shopping cart.  At the user level, the most basic level of be-

havioral abstraction is that of a session. A session is a sequence of page-

views by a single user during a single visit. The notion of a session can be 

1 2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221 

HTTP/1.1 maya.cs.depaul.edu 

Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727) 

http://dataminingresources.blogspot.com/

2 2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 200 4096 

HTTP/1.1 maya.cs.depaul.edu 

Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727) 

http://maya.cs.depaul.edu/~classes/cs589/papers.html

3 2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 200 

318814 HTTP/1.1 maya.cs.depaul.edu 

Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1) 

http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web+survey

4 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 3794 

HTTP/1.1 maya.cs.depaul.edu 

Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 

http://maya.cs.depaul.edu/~classes/cs480/

5 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636 

HTTP/1.1 maya.cs.depaul.edu 

Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 

http://maya.cs.depaul.edu/~classes/cs480/announce.html

6 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027 

HTTP/1.1 maya.cs.depaul.edu 

Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 

http://maya.cs.depaul.edu/~classes/cs480/announce.html

Fig. 12.3. Portion of a typical server log



454      12  Web Usage Mining

further abstracted by selecting a subset of pageviews in the session that are 

significant or relevant for the analysis tasks at hand. 

Content Data:  The content data in a site is the collection of objects and 

relationships that is conveyed to the user. For the most part, this data is 

comprised of combinations of textual materials and images. The data 

sources used to deliver or generate this data include static HTML/XML 

pages, multimedia files, dynamically generated page segments from 

scripts, and collections of records from the operational databases. The site

content data also includes semantic or structural meta-data embedded 

within the site or individual pages, such as descriptive keywords, docu-

ment attributes, semantic tags, or HTTP variables. The underlying domain 

ontology for the site is also considered part of the content data. Domain 

ontologies may include conceptual hierarchies over page contents, such as 

product categories, explicit representations of semantic content and rela-

tionships via an ontology language such as RDF, or a database schema 

over the data contained in the operational databases.

Structure Data: The structure data represents the designer’s view of the 

content organization within the site. This organization is captured via the 

inter-page linkage structure among pages, as reflected through hyperlinks. 

The structure data also includes the intra-page structure of the content 

within a page. For example, both HTML and XML documents can be rep-

resented as tree structures over the space of tags in the page. The hyperlink 

structure for a site is normally captured by an automatically generated “site 

map.” A site mapping tool must have the capability to capture and repre-

sent the inter- and intra-pageview relationships. For dynamically generated 

pages, the site mapping tools must either incorporate intrinsic knowledge 

of the underlying applications and scripts that generate HTML content, or 

must have the ability to generate content segments using a sampling of pa-

rameters passed to such applications or scripts.

User Data: The operational database(s) for the site may include additional 

user profile information. Such data may include demographic information 

about registered users, user ratings on various objects such as products or 

movies, past purchases or visit histories of users, as well as other explicit 

or implicit representations of users’ interests. Some of this data can be cap-

tured anonymously as long as it is possible to distinguish among different 

users. For example, anonymous information contained in client-side cook-

ies can be considered a part of the users’ profile information, and used to 

identify repeat visitors to a site. Many personalization applications require 

the storage of prior user profile information. 



12.1 Data Collection and Pre-Processing      455 

12.1.2 Key Elements of Web Usage Data Pre-Processing 

As noted in Fig. 12.2, the required high-level tasks in usage data pre-

processing include the fusion and synchronization of data from multiple 

log files, data cleaning, pageview identification, user identification, session 

identification (or sessionization), episode identification, and the integration 

of clickstream data with other data sources such as content or semantic in-

formation, as well as user and product information from operational data-

bases.  We now examine some of the essential tasks in pre-processing. 

Data Fusion and Cleaning 

In large-scale Web sites, it is typical that the content served to users comes 

from multiple Web or application servers. In some cases, multiple servers 

with redundant content are used to reduce the load on any particular server. 

Data fusion refers to the merging of log files from several Web and appli-

cation servers. This may require global synchronization across these serv-

ers. In the absence of shared embedded session ids, heuristic methods 

based on the “referrer” field in server logs along with various sessioniza-

tion and user identification methods (see below) can be used to perform the 

merging. This step is essential in “inter-site” Web usage mining where the 

analysis of user behavior is performed over the log files of multiple related 

Web sites [513]. 

Data cleaning is usually site-specific, and involves tasks such as, remov-

ing extraneous references to embedded objects that may not be important 

for the purpose of analysis, including references to style files, graphics, or 

sound files. The cleaning process also may involve the removal of at least 

some of the data fields (e.g. number of bytes transferred or version of 

HTTP protocol used, etc.) that may not provide useful information in 

analysis or data mining tasks. 

Data cleaning also entails the removal of references due to crawler navi-

gations. It is not uncommon for a typical log file to contain a significant 

(sometimes as high as 50%) percentage of references resulting from search 

engine or other crawlers (or spiders). Well-known search engine crawlers 

can usually be identified and removed by maintaining a list of known 

crawlers. Other “well-behaved” crawlers which abide by standard robot 

exclusion protocols, begin their site crawl by first attempting to access to 

exclusion file “robot.txt” in the server root directory. Such crawlers, can 

therefore, be identified by locating all sessions that begin with an (at-

tempted) access to this file. However, a significant portion of crawlers ref-

erences are from those that either do not identify themselves explicitly 

(e.g., in the “agent” field) or implicitly; or from those crawlers that delib-



456      12  Web Usage Mining

erately masquerade as legitimate users. In this case, identification and re-

moval of crawler references may require the use of heuristic methods that 

distinguish typical behavior of Web crawlers from those of actual users. 

Some work has been done on using classification algorithms to build mod-

els of crawlers and Web robot navigations [510], but such approaches have 

so far been met with only limited success and more work in this area is re-

quired.

Pageview Identification 

Identification of pageviews is heavily dependent on the intra-page struc-

ture of the site, as well as on the page contents and the underlying site do-

main knowledge. Recall that, conceptually, each pageview can be viewed 

as a collection of Web objects or resources representing a specific “user 

event,” e.g., clicking on a link, viewing a product page, adding a product to 

the shopping cart. For a static single frame site, each HTML file may have 

a one-to-one correspondence with a pageview. However, for multi-framed 

sites, several files make up a given pageview. For dynamic sites, a page-

view may represent a combination of static templates and content gener-

ated by application servers based on a set of parameters.  

In addition, it may be desirable to consider pageviews at a higher level 

of aggregation, where each pageview represents a collection of pages or 

objects, for examples, pages related to the same concept category. In e-

commerce Web sites, pageviews may correspond to various product-

oriented events, such as product views, registration, shopping cart changes, 

purchases, etc. In this case, identification of pageviews may require a pri-

ori specification of an “event model” based on which various user actions 

can be categorized.  

In order to provide a flexible framework for a variety of data mining ac-

tivities a number of attributes must be recorded with each pageview. These 

attributes include the pageview id (normally a URL uniquely representing 

the pageview), static pageview type (e.g., information page, product view, 

category view, or index page), and other metadata, such as content attrib-

utes (e.g., keywords or product attributes). 

User Identification 

The analysis of Web usage does not require knowledge about a user’s 

identity. However, it is necessary to distinguish among different users. 

Since a user may visit a site more than once, the server logs record multi-

ple sessions for each user. We use the phrase user activity record to refer 

to the sequence of logged activities belonging to the same user. 



12.1 Data Collection and Pre-Processing      457 

In the absence of authentication mechanisms, the most widespread ap-

proach to distinguishing among unique visitors is the use of client-side 

cookies. Not all sites, however, employ cookies, and due to privacy con-

cerns, client-side cookies are sometimes disabled by users. IP addresses, 

alone, are not generally sufficient for mapping log entries onto the set of 

unique visitors. This is mainly due to the proliferation of ISP proxy servers 

which assign rotating IP addresses to clients as they browse the Web. It is 

not uncommon to find many log entries corresponding to a limited number 

of proxy server IP addresses from large Internet Service Providers such as 

America Online. Therefore, two occurrences of the same IP address (sepa-

rated by a sufficient amount of time), in fact, might correspond to two dif-

ferent users. Without user authentication or client-side cookies, it is still 

possible to accurately identify unique users through a combination of IP 

addresses and other information such as user agents and referrers [115].  

Consider, for instance, the example of Fig. 12.4. On the left, the figure 

depicts a portion of a partly preprocessed log file (the time stamps are 

given as hours and minutes only). Using a combination of IP and Agent 

fields in the log file, we are able to partition the log into activity records 

for three separate users (depicted on the right). 

Time IP URL Ref Agent

0:01 1.2.3.4 A - IE5;Win2k

0:09 1.2.3.4 B A IE5;Win2k

0:10 2.3.4.5 C - IE6;WinXP;SP1

0:12 2.3.4.5 B C IE6;WinXP;SP1

0:15 2.3.4.5 E C IE6;WinXP;SP1

0:19 1.2.3.4 C A IE5;Win2k

0:22 2.3.4.5 D B IE6;WinXP;SP1

0:22 1.2.3.4 A - IE6;WinXP;SP2

0:25 1.2.3.4 E C IE5;Win2k

0:25 1.2.3.4 C A IE6;WinXP;SP2

0:33 1.2.3.4 B C IE6;WinXP;SP2

0:58 1.2.3.4 D B IE6;WinXP;SP2

1:10 1.2.3.4 E D IE6;WinXP;SP2

1:15 1.2.3.4 A - IE5;Win2k

1:16 1.2.3.4 C A IE5;Win2k

1:17 1.2.3.4 F C IE6;WinXP;SP2

1:26 1.2.3.4 F C IE5;Win2k

1:30 1.2.3.4 B A IE5;Win2k

1:36 1.2.3.4 D B IE5;Win2k

0:01 1.2.3.4 A -

0:09 1.2.3.4 B A

0:19 1.2.3.4 C A

0:25 1.2.3.4 E C

1:15 1.2.3.4 A -

1:26 1.2.3.4 F C

1:30 1.2.3.4 B A

1:36 1.2.3.4 D B

User 1

0:22 1.2.3.4 A -

0:25 1.2.3.4 C A

0:33 1.2.3.4 B C

0:58 1.2.3.4 D B

1:10 1.2.3.4 E D

1:17 1.2.3.4 F C

User 3

0:10 2.3.4.5 C -

0:12 2.3.4.5 B C

0:15 2.3.4.5 E C

0:22 2.3.4.5 D B

User 2

Fig. 12.4. Example of user identification using IP + Agent 



458      12  Web Usage Mining

Sessionization

Sessionization is the process of segmenting the user activity record of each 

user into sessions, each representing a single visit to the site. Web sites 

without the benefit of additional authentication information from users and 

without mechanisms such as embedded session ids must rely on heuristics 

methods for sessionization. The goal of a sessionization heuristic is to re-

construct, from the clickstream data, the actual sequence of actions per-

formed by one user during one visit to the site.  

We denote the “conceptual” set of real sessions by R, representing the 

real activity of the user on the Web site. A sessionization heuristic h at-

tempts to map R into a set of constructed sessions, denoted by Ch. For the 

ideal heuristic, h*, we have Ch*= R. In other words, the ideal heuristic can 

re-construct the exact sequence of user navigation during a session. Gener-

ally, sessionization heuristics fall into two basic categories: time-oriented 

or structure-oriented. Time-oriented heuristics apply either global or local 

time-out estimates to distinguish between consecutive sessions, while 

structure-oriented heuristics use either the static site structure or the im-

plicit linkage structure captured in the referrer fields of the server logs. 

Various heuristics for sessionization have been identified and studied 

[115]. More recently, a formal framework for measuring the effectiveness 

of such heuristics has been proposed [498], and the impact of different 

heuristics on various Web usage mining tasks has been analyzed [46]. 

As an example, two variations of time-oriented heuristics and a basic 

navigation-oriented heuristic are given below. Each heuristic h scans the 

user activity logs to which the Web server log is partitioned after user 

identification, and outputs a set of constructed sessions: 

h1: Total session duration may not exceed a threshold . Given t0, the 

timestamp for the first request in a constructed session S, the request 

with a timestamp t is assigned to S, iff t t0 .

h2: Total time spent on a page may not exceed a threshold . Given t1,

the timestamp for request assigned to constructed session S, the next re-

quest with timestamp t2 is assigned to S, iff t2 t1 .

h-ref: A request q is added to constructed session S if the referrer for q

was previously invoked in S. Otherwise, q is used as the start of a new 

constructed session. Note that with this heuristic it is possible that a re-

quest q may potentially belong to more than one “open” constructed 

session, since q may have been accessed previously in multiple sessions. 

In this case, additional information can be used for disambiguation. For 

example, q could be added to the most recently opened session satisfy-

ing the above condition. 



12.1 Data Collection and Pre-Processing      459 

An example of the application of sessionization heuristics is given in 

Fig. 12.5 and Fig. 12.6. In Fig. 12.5, the heuristic h1, described above, with 

 = 30 minutes has been used to partition a user activity record (from the 

example of Fig. 12.4) into two separate sessions.  

If we were to apply h2 with a threshold of 10 minutes, the user record 

would be seen as three sessions, namely, A B C E, A, and F B D. 

On the other hand, Fig. 12.6 depicts an example of using h-ref heuristic on 

the same user activity record. In this case, once the request for F (with time 

stamp 1:26) is reached, there are two open sessions, namely, A B C E

and A. But F is added to the first because its referrer, C, was invoked in 

session 1. The request for B (with time stamp 1:30) may potentially belong 

to both open sessions, since its referrer, A, is invoked both in session 1 and 

in session 2. In this case, it is added to the second session, since it is the 

most recently opened session. 

Episode identification can be performed as a final step in pre-processing 

of the clickstream data in order to focus on the relevant subsets of page-

views in each user session. An episode is a subset or subsequence of a ses-

sion comprised of semantically or functionally related pageviews. This 

task may require the automatic or semi-automatic classification of page-

Time IP URL Ref

0:01 1.2.3.4 A -

0:09 1.2.3.4 B A

0:19 1.2.3.4 C A

0:25 1.2.3.4 E C

1:15 1.2.3.4 A -

1:26 1.2.3.4 F C

1:30 1.2.3.4 B A

1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -

0:09 1.2.3.4 B A

0:19 1.2.3.4 C A

0:25 1.2.3.4 E C

Session 1

1:15 1.2.3.4 A -

1:26 1.2.3.4 F C

1:30 1.2.3.4 B A

1:36 1.2.3.4 D B

Session 2

Fig. 12.5. Example of sessionization with a time-oriented heuristic 

Time IP URL Ref

0:01 1.2.3.4 A -

0:09 1.2.3.4 B A

0:19 1.2.3.4 C A

0:25 1.2.3.4 E C

1:15 1.2.3.4 A -

1:26 1.2.3.4 F C

1:30 1.2.3.4 B A

1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -

0:09 1.2.3.4 B A

0:19 1.2.3.4 C A

0:25 1.2.3.4 E C

1:26 1.2.3.4 F C

Session 1

1:15 1.2.3.4 A -

1:30 1.2.3.4 B A

1:36 1.2.3.4 D B
Session 2

Fig. 12.6. Example of sessionization with the h-ref heuristic



460      12  Web Usage Mining

views into different functional types or into concept classes according to a 

domain ontology or concept hierarchy. In highly dynamic sites, it may also 

be necessary to map pageviews within each session into “service-based” 

classes according to a concept hierarchy over the space of possible pa-

rameters passed to script or database queries [47]. For example, the analy-

sis may ignore the quantity and attributes of an item added to the shopping 

cart, and focus only on the action of adding the item to the cart. 

Path Completion 

Another potentially important pre-processing task which is usually per-

formed after sessionization is path completion. Client- or proxy-side 

caching can often result in missing access references to those pages or ob-

jects that have been cached. For instance, if a user returns to a page A dur-

ing the same session, the second access to A will likely result in viewing 

the previously downloaded version of A that was cached on the client-side, 

and therefore, no request is made to the server. This results in the second 

reference to A not being recorded on the server logs. Missing references

due to caching can be heuristically inferred through path completion which 

relies on the knowledge of site structure and referrer information from 

server logs [115]. In the case of dynamically generated pages, form-based 

applications using the HTTP POST method result in all or part of the user 

input parameter not being appended to the URL accessed by the user 

(though, in the latter case, it is possible to recapture the user input through 

packet sniffers which listen to all incoming and outgoing TCP/IP network 

traffic on the server side).  

A simple example of missing references is given in Fig. 12.7. On the 

left, a graph representing the linkage structure of the site is given. The dot-

ted arrows represent the navigational path followed by a hypothetical user. 

After reaching page E, the user has backtracked (e.g., using the browser’s 

“back” button) to page D and then B from which she has navigated to page 

C. The back references to D and B do not appear in the log file because 

these pages where cached on the client-side (thus no explicit server request 

was made for these pages). The log file shows that after a request for E, the 

next request by the user is for page C with a referrer B. In other words, 

there is a gap in the activity record corresponding to user’s navigation from 

page E to page B.  Given the site graph, it is possible to infer the two miss-

ing references (i.e., E  D and D  B) from the site structure and the re-

ferrer information given above. It should be noted that there are, in gen-

eral, many (possibly infinite), candidate completions (for example, 

consider the sequence E  D, D  B, B  A, A  B). A simple heuristic 



12.1 Data Collection and Pre-Processing      461 

that can be used for disambiguating among candidate paths is to select the 

one requiring the fewest number of “back” references. 

Data Integration 

The above pre-processing tasks ultimately result in a set of user sessions 

(or episodes), each corresponding to a delimited sequence of pageviews. 

However, in order to provide the most effective framework for pattern dis-

covery, data from a variety of other sources must be integrated with the 

preprocessed clickstream data. This is particularly the case in e-commerce 

applications where the integration of both user data (e.g., demographics, 

ratings, and purchase histories) and product attributes and categories from 

operational databases is critical. Such data, used in conjunction with usage 

data, in the mining process can allow for the discovery of important busi-

ness intelligence metrics such as customer conversion ratios and lifetime

values [286].  

In addition to user and product data, e-commerce data includes various 

product-oriented events such as shopping cart changes, order and shipping 

information, impressions (when the user visits a page containing an item 

of interest), click-throughs (when the user actually clicks on an item of in-

terest in the current page), and other basic metrics primarily used for data 

analysis. The successful integration of these types of data requires the crea-

tion of a site-specific “event model” based on which subsets of a user’s 

clickstream are aggregated and mapped to specific events such as the addi-

tion of a product to the shopping cart. Generally, the integrated e-

commerce data is stored in the final transaction database. To enable full-

featured Web analytics applications, this data is usually stored in a data 

warehouse called an e-commerce data mart. The e-commerce data mart 

A

B C

D E F

User’s actual navigation path: 

A B  D  E  D  B  C 

What the server log shows: 

URL   Referrer

 A         -- 

 B         A 

 D         B 

 E         D 

 C         B

Fig. 12.7. Missing references due to caching. 



462      12  Web Usage Mining

is a multi-dimensional database integrating data from various sources, and 

at different levels of aggregation. It can provide pre-computed e-metrics 

along multiple dimensions, and is used as the primary data source for 

OLAP (Online Analytical Processing), for data visualization, and in data 

selection for a variety of data mining tasks [71, 279]. Some examples of 

such metrics include frequency or monetary value of purchases, average 

size of market baskets, the number of different items purchased, the num-

ber of different item categories purchased, the amount of time spent on 

pages or sections of the site, day of week and time of day when a certain 

activity occurred, response to recommendations and online specials, etc. 

12.2 Data Modeling for Web Usage Mining 

Usage data pre-processing results in a set of n pageviews, P = {p1, p2, ···, 

pn}, and a set of m user transactions, T = {t1,t2,···,tm}, where each ti in T 

is a subset of P. Pageviews are semantically meaningful entities to 

which mining tasks are applied (such as pages or products). Conceptu-

ally, we view each transaction t as an l-length sequence of ordered pairs: 

,))(,(,)),(,()),(,( 2211
t
l

t
l

tttt pwppwppwpt

where each pti = pj for some j in {1, 2, ···, n}, and w(pti) is the weight as-

sociated with pageview pti in transaction t, representing its significance. 

The weights can be determined in a number of ways, in part based on the 

type of analysis or the intended personalization framework. For example, 

in collaborative filtering applications which rely on the profiles of similar 

users to make recommendations to the current user, weights may be based 

on user ratings of items. In most Web usage mining tasks the weights are 

either binary, representing the existence or non-existence of a pageview in 

the transaction; or they can be a function of the duration of the pageview in 

the user’s session. In the case of time durations, it should be noted that 

usually the time spent by a user on the last pageview in the session is not 

available. One commonly used option is to set the weight for the last page-

view to be the mean time duration for the page taken across all sessions in 

which the pageview does not occur as the last one. In practice, it is com-

mon to use a normalized value of page duration instead of raw time dura-

tion in order to account for user variances. In some applications, the log of 

pageview duration is used as the weight to reduce the noise in the data. 

For many data mining tasks, such as clustering and association rule min-

ing, where the ordering of pageviews in a transaction is not relevant, we 

can represent each user transaction as a vector over the n-dimensional space 



12.2 Data Modeling for Web Usage Mining      463 

of pageviews. Given the transaction t above, the transaction vector t (we 

use a bold face lower case letter to represent a vector) is given by: 

t

p

t

p

t

p n
www ,,,

21
t ,

where each wt
pi
 = w(ptj), for some j in {1, 2, ···, n}, if pj appears in the trans-

action t, and wt
pi

= 0 otherwise. Thus, conceptually, the set of all user trans-

actions can be viewed as an m×n user-pageview matrix (also called the

transaction matrix), denoted by UPM.

An example of a hypothetical user-pageview matrix is depicted in Fig. 

12.8. In this example, the weights for each pageview is the amount of time 

(e.g., in seconds) that a particular user spent on the pageview. In practice, 

these weights must be normalized to account for variances in viewing 

times by different users. It should also be noted that the weights may be 

composite or aggregate values in cases where the pageview represents a 

collection or sequence of pages and not a single page. 

Given a set of transactions in the user-pageview matrix as described 

above, a variety of unsupervised learning techniques can be applied to 

obtain patterns. These techniques such as clustering of transactions (or 

sessions) can lead to the discovery of important user or visitor segments. 

Other techniques such as item (e.g., pageview) clustering and association 

or sequential pattern mining can find important relationships among 

items based on the navigational patterns of users in the site.  

As noted earlier, it is also possible to integrate other sources of knowl-

edge, such as semantic information from the content of Web pages with 

the Web usage mining process. Generally, the textual features from the 

content of Web pages represent the underlying semantics of the site. Each 

A B C D E F

user0 15 5 0 0 0 185

user1 0 0 32 4 0 0

user2 12 0 0 56 236 0

user3 9 47 0 0 0 134

user4 0 0 23 15 0 0

user5 17 0 0 157 69 0

user6 24 89 0 0 0 354

user7 0 0 78 27 0 0

user8 7 0 45 20 127 0

user9 0 38 57 0 0 15

Sessions /

users

Pageviews 

Fig. 12.8. An example of a user-pageview matrix (or transaction matrix) 



464      12  Web Usage Mining

pageview p can be represented as a r-dimensional feature vector, where r

is the total number of extracted features (words or concepts) from the site 

in a global dictionary. This vector, denoted by p, can be given by:  

)(),...,(),( 21 r

ppp ffwffwffwp

where fwp( fj ) is the weight of the jth feature (i.e., fj ) in pageview p, for 1 

j  r. For the whole collection of pageviews in the site, we then have an 

n×r pageview-feature matrix PFM = {p1, p2, …, pn}. The integration 

process may, for example, involve the transformation of user transactions 

(in user-pageview matrix) into “content-enhanced” transactions containing 

the semantic features of the pageviews. The goal of such a transformation 

is to represent each user session (or more generally, each user profile) as a 

vector of semantic features (i.e., textual features or concept labels) rather 

than as a vector over pageviews. In this way, a user’s session reflects not 

only the pages visited, but also the significance of various concepts or con-

text features that are relevant to the user’s interaction. 

While, in practice, there are several ways to accomplish this transforma-

tion, the most direct approach involves mapping each pageview in a transac-

tion to one or more content features. The range of this mapping can be the 

full feature space, or feature sets (composite features) which in turn may 

represent concepts and concept categories. Conceptually, the transformation 

can be viewed as the multiplication of the user-pageview matrix UPM, de-

fined earlier, with the pageview-feature matrix PFM. The result is a new 

matrix, TFM = {t1, t2, …, tm}, where each ti is a r-dimensional vector 

over the feature space. Thus, a user transaction can be represented as a 

content feature vector, reflecting that user’s interests in particular con-

cepts or topics. 

As an example of content-enhanced transactions, consider Fig. 12.9 

which shows a hypothetical matrix of user sessions (user-pageview ma-

trix) as well as a document index for the corresponding Web site concep-

tually represented as a term-pageview matrix. Note that the transpose of 

this term-pageview matrix is the pageview-feature matrix. The user-

pageview matrix simply reflects the pages visited by users in various ses-

sions. On the other hand, the term-pageview matrix represents the con-

cepts that appear in each page. For simplicity we have assumed that all 

the weights are binary (however, note that in practice weights in the user 

transaction data are usually not binary and represent some measure of 

significance of the page in that transaction; and the weights in the term-

pageview matrix are usually a function of term frequencies).  

In this case, the corresponding content-enhanced transaction matrix

(derived by multiplying the user-pageview matrix and the transpose of 

the term-pageview matrix) is depicted in Fig. 12.10. The resulting matrix 



12.2 Data Modeling for Web Usage Mining      465 

shows, for example, that users 4 and 6 are more interested in Web infor-

mation retrieval, while user 3 is more interested in data mining. 

Various data mining tasks can now be performed on the content-

enhanced transaction data. For example, clustering the enhanced transac-

tion matrix of Fig. 12.10 may reveal segments of users that have common 

interests in different concepts as indicated from their navigational behav-

iors.

If the content features include relational attributes associated with items 

on the Web site, then the discovered patterns may reveal user interests at 

the deeper semantic level reflected in the underlying properties of the 

items that are accessed by the users on the Web site. As an example, con-

sider a site containing information about movies. The site may contain 

pages related to the movies themselves, as well as attributes describing the 

properties of each movie, such as actors, directors, and genres. The mining 

 A.html B.html C.html D.html E.html 

user1 1 0 1 0 1 

user2 1 1 0 0 1 

user3 0 1 1 1 0 

user4 1 0 1 1 1 

user5 1 1 0 0 1 

user6 1 0 1 1 1 

 A.html B.html C.html D.html E.html 

web 0 0 1 1 1 

data 0 1 1 1 0 

mining 0 1 1 1 0 

business 1 1 0 0 0 

intelligence 1 1 0 0 1 

marketing 1 1 0 0 1 

ecommerce 0 1 1 0 0 

search 1 0 1 0 0 

information 1 0 1 1 1 

retrieval 1 0 1 1 1 

Fig. 12.9. Examples of a user-pageview matrix (top) and a term-pageview matrix 

(bottom) 

 web data mining business intelligence marketing ecommerce search information retrieval 

user1 2 1 1 1 2 2 1 2 3 3 

user2 1 1 1 2 3 3 1 1 2 2 

user3 2 3 3 1 1 1 2 1 2 2 

user4 3 2 2 1 2 2 1 2 4 4 

user5 1 1 1 2 3 3 1 1 2 2 

user6 3 2 2 1 2 2 1 2 4 4 

Fig. 12.10. The content-enhanced transaction matrix from matrices of Fig. 12.9  



466      12  Web Usage Mining

process may, for instance, generate an association rule such as: {“British”, 

“Romance”, “Comedy”  “Hugh Grant”}, suggesting that users who are 

interested in British romantic comedies may also like the actor Hugh Grant 

(with a certain degree of confidence). Therefore, the integration of seman-

tic content with Web usage mining can potentially provide a better under-

standing of the underlying relationships among objects. 

12.3 Discovery and Analysis of Web Usage Patterns 

The types and levels of analysis, performed on the integrated usage data, 

depend on the ultimate goals of the analyst and the desired outcomes. In 

this section we describe some of the most common types of pattern discov-

ery and analysis techniques employed in the Web usage mining domain 

and discuss some of their applications. 

12.3.1 Session and Visitor Analysis 

The statistical analysis of pre-processed session data constitutes the most 

common form of analysis. In this case, data is aggregated by predeter-

mined units such as days, sessions, visitors, or domains. Standard statisti-

cal techniques can be used on this data to gain knowledge about visitor be-

havior. This is the approach taken by most commercial tools available for 

Web log analysis. Reports based on this type of analysis may include in-

formation about most frequently accessed pages, average view time of a 

page, average length of a path through a site, common entry and exit 

points, and other aggregate measures. Despite a lack of depth in this type 

of analysis, the resulting knowledge can be potentially useful for improv-

ing the system performance, and providing support for marketing deci-

sions. Furthermore, commercial Web analytics tools are increasingly in-

corporating a variety of data mining algorithms resulting in more 

sophisticated site and customer metrics. 

Another form of analysis on integrated usage data is Online Analytical 

Processing (OLAP). OLAP provides a more integrated framework for 

analysis with a higher degree of flexibility. The data source for OLAP 

analysis is usually a multidimensional data warehouse which integrates us-

age, content, and e-commerce data at different levels of aggregation for 

each dimension. OLAP tools allow changes in aggregation levels along 

each dimension during the analysis. Analysis dimensions in such a struc-

ture can be based on various fields available in the log files, and may in-

clude time duration, domain, requested resource, user agent, and referrers. 



12.3 Discovery and Analysis of Web Usage Patterns      467 

This allows the analysis to be performed on portions of the log related to a 

specific time interval, or at a higher level of abstraction with respect to the 

URL path structure. The integration of e-commerce data in the data ware-

house can further enhance the ability of OLAP tools to derive important 

business intelligence metrics [71]. The output from OLAP queries can also 

be used as the input for a variety of data mining or data visualization tools.  

12.3.2 Cluster Analysis and Visitor Segmentation 

Clustering is a data mining technique that groups together a set of items 

having similar characteristics. In the usage domain, there are two kinds of 

interesting clusters that can be discovered: user clusters and page clusters.

Clustering of user records (sessions or transactions) is one of the most 

commonly used analysis tasks in Web usage mining and Web analytics. 

Clustering of users tends to establish groups of users exhibiting similar 

browsing patterns. Such knowledge is especially useful for inferring user 

demographics in order to perform market segmentation in e-commerce ap-

plications or provide personalized Web content to the users with similar 

interests. Further analysis of user groups based on their demographic at-

tributes (e.g., age, gender, income level, etc.) may lead to the discovery of 

valuable business intelligence. Usage-based clustering has also been used 

to create Web-based “user communities” reflecting similar interests of 

groups of users [423], and to learn user models that can be used to provide 

dynamic recommendations in Web personalization applications [390]. 

Given the mapping of user transactions into a multi-dimensional space 

as vectors of pageviews (see Fig. 12.8), standard clustering algorithms, 

such as k-means, can partition this space into groups of transactions that 

are close to each other based on a measure of distance or similarity among 

the vectors (see Chap. 4). Transaction clusters obtained in this way can 

represent user or visitor segments based on their navigational behavior or 

other attributes that have been captured in the transaction file. However, 

transaction clusters by themselves are not an effective means of capturing 

the aggregated view of common user patterns. Each transaction cluster 

may potentially contain thousands of user transactions involving hundreds 

of pageview references. The ultimate goal in clustering user transactions is 

to provide the ability to analyze each segment for deriving business intelli-

gence, or to use them for tasks such as personalization. 

One straightforward approach in creating an aggregate view of each 

cluster is to compute the centroid (or the mean vector) of each cluster. The 

dimension value for each pageview in the mean vector is computed by 

finding the ratio of the sum of the pageview weights across transactions to 



468      12  Web Usage Mining

the total number of transactions in the cluster. If pageview weights in the 

original transactions are binary, then the dimension value of a pageview p
in a cluster centroid represents the percentage of transactions in the cluster 

in which p occurs. Thus, the centroid dimension value of p provides a 

measure of its significance in the cluster. Pageviews in the centroid can be 

sorted according to these weights and lower weight pageviews can be fil-

tered out. The resulting set of pageview-weight pairs can be viewed as an 

“aggregate usage profile” representing the interests or behavior of a sig-

nificant group of users.  

More formally, given a transaction cluster cl, we can construct the ag-

gregate profile prcl as a set of pageview-weight pairs by computing the 

centroid of cl: 

},),(|)),(,{( clclcl prpweightprpweightppr (1)

where:

the significance weight, weight(p, prcl ), of the page p within the aggre-

gate profile prcl is given by 

);,(
||

1
),( s

s

pw
cl

prpweight
cl

cl
(2)

| cl | is the number of transactions in cluster cl;

w(p,s) is the weight of page p in transaction vector s of cluster cl; and

the threshold µ is used to focus only on those pages in the cluster that 

appear in a sufficient number of vectors in that cluster. 

Each such profile, in turn, can be represented as a vector in the original 

n -dimensional space of pageviews. This aggregate representation can be 

used directly for predictive modeling and in applications such as recom-

mender systems: given a new user, u ,who has accessed a set of pages, Pu,

so far, we can measure the similarity of Pu to the discovered profiles, and 

recommend to the user those pages in matching profiles which have not 

yet been accessed by the user.  

As an example, consider the transaction data depicted in Fig. 12.11 

(left). For simplicity we assume that feature (pageview) weights in each 

transaction vector are binary (in contrast to weights based on a function of 

pageview duration). We assume that the data has already been clustered 

using a standard clustering algorithm such as k-means, resulting in three 

clusters of user transactions. The table on the right of Fig. 12.11 shows the 

aggregate profile corresponding to cluster 1. As indicated by the pageview 

weights, pageviews B and F are the most significant pages characterizing 

the common interests of users in this segment. Pageview C, however, only 

appears in one transaction and might be removed given a filtering thresh-



12.3 Discovery and Analysis of Web Usage Patterns      469 

old greater than 0.25. Such patterns are useful for characterizing user or 

customer segments. This example, for instance, indicates that the resulting 

user segment is clearly interested in items B and F and to a lesser degree in 

item A. Given a new user who shows interest in items A and B, this pattern 

may be used to infer that the user might belong to this segment and, there-

fore, we might recommend item F to that user. 

Clustering of pages (or items) can be performed based on the usage data 

(i.e., starting from the user sessions or transaction data), or based on the 

content features associated with pages or items (keywords or product at-

tributes). In the case of content-based clustering, the result may be collec-

tions of pages or products related to the same topic or category. In usage-

based clustering, items that are commonly accessed or purchased together 

can be automatically organized into groups. It can also be used to provide 

permanent or dynamic HTML pages that suggest related hyperlinks to the 

users according to their past history of navigational or purchase activities.  

A variety of stochastic methods have also been proposed recently for 

clustering of user transactions, and more generally for user modeling. For 

example, recent work in this area has shown that mixture models are able 

to capture more complex, dynamic user behavior. This is, in part, because 

the observation data (i.e., the user-item space) in some applications (such 

as large and very dynamic Web sites) may be too complex to be modeled 

by basic probability distributions such as a normal or a multinomial distri-

bution. In particular, each user may exhibit different “types” of behavior 

corresponding to different tasks, and common behaviors may each be re-

flected in a different distribution within the data. 

Fig. 12.11. Derivation of aggregate profiles from Web transaction clusters 

 A B C D E F

user 1 0 0 1 1 0 0 

user 4 0 0 1 1 0 0 

user 7 0 0 1 1 0 0 

user 0 1 1 0 0 0 1 

user 3 1 1 0 0 0 1 

user 6 1 1 0 0 0 1 

user 9 0 1 1 0 0 1 

user 2 1 0 0 1 1 0 

user 5 1 0 0 1 1 0 

user 8 1 0 1 1 1 0 

Aggregated Profile 
for Cluster 1 

Weight Pageview 

1.00 B 

1.00 F 

0.75 A 

0.25 C 

Cluster 0 

Cluster 1 

Cluster 2 



470      12  Web Usage Mining

The general idea behind mixture models (such as a mixture of Markov 

models) is as follow. We assume that there exist k types of user behavior 

(or k user clusters) within the data, and each user session is assumed to be 

generated via a generative process which models the probability distribu-

tions of the observed variables and hidden variables. First, a user cluster is 

chosen with some probability. Then, the user session is generated from a 

Markov model with parameters specific to that user cluster. The probabili-

ties of each user cluster is estimated, usually via the EM [127] algorithm, 

as well as the parameters of each mixture component. Mixture-based user 

models can provide a great deal of flexibility. For example, a mixture of 

first-order Markov models [76] not only can probabilistically cluster user 

sessions based on similarities in navigation behavior, but also characterize 

each type of user behavior using a first-order Markov model, thus captur-

ing popular navigation paths or characteristics of each user cluster. A mix-

ture of hidden Markov models was proposed in [580] for modeling click-

stream of Web surfers. In addition to user-based clustering, this approach 

can also be used for automatic page classification. Incidentally, mixture 

models have been discussed in Sect. 3.7 in the context of naïve Bayesian 

classification. The EM algorithm is used in the same context in Sect. 5.1.  

Mixture models tend to have their own shortcomings. From the data 

generation perspective, each individual observation (such as a user session) 

is generated from one and only one component model. The probability as-

signment to each component only measures the uncertainty about this as-

signment. This assumption limits this model’s ability of capturing complex 

user behavior, and more seriously, may result in overfitting.  

Probabilistic Latent Semantic Analysis (PLSA) provides a reasonable 

solution to the above problem [240]. In the context of Web user naviga-

tion, each observation (a user visiting a page) is assumed to be generated 

based on a set of unobserved (hidden) variables which “explain” the user-

page observations. The data generation process is as follows: a user is se-

lected with a certain probability, next conditioned on the user, a hidden 

variable is selected, and then the page to visit is selected conditioned on 

the chosen hidden variable. Since each user usually visits multiple pages, 

this data generation process ensures that each user is explicitly associated 

with multiple hidden variables, thus reducing the overfitting problems as-

sociated with the above mixture models. The PLSA model also uses the 

EM algorithm to estimate the parameters which probabilistically character-

ize the hidden variables underlying the co-occurrence observation data, 

and measure the relationship among hidden and observed variables.  

This approach provides a great deal of flexibility since it provides a sin-

gle framework for quantifying the relationships between users, between 

items, between users and items, and between users or items and hidden 



12.3 Discovery and Analysis of Web Usage Patterns      471 

variables that “explain” the observed relationships [254]. Given a set of n

user profiles (or transaction vectors), UP = {u1, u2, … , un}, and a set of m
items (e.g., pages or products), I = {i1, i2, … , im}, the PLSA model associ-

ates a set of unobserved factor variables Z = {z1, z2, …, zq} with observa-

tions in the data (q is specified by the user). Each observation corresponds 

to a weight wuk
(ij) for an item ij in the user profile for a user uk. This weight 

may, for example, correspond to the significance of the page in the user 

transaction or the user rating associated with the item. For a given user u

and a given item i, the following joint probability can be derived (see [254] 

for details of the derivation): 

q

k

kkk zizuziu
1

)|Pr()|Pr()Pr(),Pr( . (3)

In order to explain the observations in (UP, I), we need to estimate the 

parameters Pr(zk), Pr(u|zk), and Pr(i|zk), while maximizing the following 

likelihood L(UP, I) of the observation data: 

( , ) ( ) log Pr( , )u

u UP i I

L UP I w i u i . (4)

The Expectation Maximization (EM) algorithm is used to perform maxi-

mum likelihood parameter estimation. Based on initial values of Pr(zk),
Pr(u|zk), and Pr(i|zk), the algorithm alternates between an expectation step 

and maximization step. In the expectation step, posterior probabilities are 

computed for latent variables based on current estimates, and in the maxi-

mization step the re-estimated parameters are obtained. Iterating the expec-

tation and maximization steps monotonically increases the total likelihood 

of the observed data L(UP, I), until a local optimal solution is reached. De-

tails of this approach can be found in [254]. 

Again, one of the main advantages of PLSA model in Web usage min-

ing is that using probabilistic inference with the above estimated parame-

ters, we can derive relationships among users, among pages, and between 

users and pages. Thus this framework provides a flexible approach to 

model a variety of types of usage patterns.  

12.3.3 Association and Correlation Analysis 

Association rule discovery and statistical correlation analysis can find 

groups of items or pages that are commonly accessed or purchased to-

gether. This, in turn, enables Web sites to organize the site content more 

efficiently, or to provide effective cross-sale product recommendations.  



472      12  Web Usage Mining

Most common approaches to association discovery are based on the Ap-

riori algorithm (see Sect. 2.2). This algorithm finds groups of items (page-

views appearing in the preprocessed log) occurring frequently together in 

many transactions (i.e., satisfying a user specified minimum support 

threshold). Such groups of items are referred to as frequent itemsets. As-

sociation rules which satisfy a minimum confidence threshold are then 

generated from the frequent itemsets.  

Recall an association rule is an expression of the form X Y [sup, conf], 

where X and Y are itemsets, sup is the support of the itemset X  Y repre-

senting the probability that X and Y occur together in a transaction, and 

conf is the confidence of the rule, defined by sup(X Y) / sup(X), represent-

ing the conditional probability that Y occurs in a transaction given that X

has occurred in that transaction. More details on association rule discovery 

can be found in Chap. 2. 

The mining of association rules in Web transaction data has many ad-

vantages. For example, a high-confidence rule such as 

special-offers/, /products/software/  shopping-cart/

might provide some indication that a promotional campaign on software 

products is positively affecting online sales. Such rules can also be used to 

optimize the structure of the site. For example, if a site does not provide di-

rect linkage between two pages A and B, the discovery of a rule, A  B,

would indicates that providing a direct hyperlink from A to B might aid us-

ers in finding the intended information. Both association analysis (among 

products or pageviews) and statistical correlation analysis (generally 

among customers or visitors) have been used successfully in Web person-

alization and recommender systems [236, 389].  

Indeed, one of the primary applications of association rule mining in 

Web usage or e-commerce data is in recommendation. For example, in the 

collaborative filtering context, Sarwar et al. [474] used association rules in 

the context of a top-N recommender system for e-commerce. The prefer-

ences of the target user are matched against the items in the antecedent X
of each rule, and the items on the right hand side of the matching rules are 

sorted according to the confidence values. Then the top N ranked items 

from this list are recommended to the target user (see Sect. 3.5.3). 

One problem for association rule recommendation systems is that a sys-

tem cannot give any recommendations when the dataset is sparse (which is 

often the case in Web usage mining and collaborative filtering applica-

tions). The reason for this sparsity is that any given user visits (or rates) 

only a very small fraction of the available items, and thus it is often diffi-

cult to find a sufficient number of common items in multiple user profiles. 

Sarwar et al. [474] relied on some standard dimensionality reduction tech-



12.3 Discovery and Analysis of Web Usage Patterns      473 

niques to alleviate this problem. One deficiency of this and other dimen-

sionality reduction approaches is that some of the useful or interesting 

items may be removed, and therefore, may not appear in the final patterns. 

Fu et al. [187] proposed two potential solutions to this problem. The first 

solution is to rank all the discovered rules based on the degree of intersec-

tion between the left-hand side of each rule and the user’s active session 

and then to generate the top k recommendations. This approach will relax 

the constraint of having to obtain a complete match with the left-hand-side 

of the rules. The second solution is to utilize collaborative filtering: the 

system finds “close neighbors” who have similar interest to a target user 

and makes recommendations based on the close neighbors’ histories.  

Lin et al. [337] proposed a collaborative recommendation system us-

ing association rules. The proposed mining algorithm finds an appropriate 

number of rules for each target user by automatically selecting the mini-

mum support. The system generates association rules among users (user 

associations), as well as among items (item associations). If a user mini-

mum support is greater than a threshold, the system generates recommen-

dations based on user associations, else it uses item associations. 

Because it is difficult to find matching rule antecedent with a full user 

profile (e.g., a full user session or transaction), association-based recom-

mendation algorithms typically use a sliding window w over the target 

user’s active profile or session. The window represents the portion of 

user’s history that will be used to predict future user actions (based on 

matches with the left-hand sides of the discovered rules). The size of this 

window is iteratively decreased until an exact match with the antecedent of 

a rule is found. A problem with the naive approach to this algorithm is that 

it requires repeated search through the rule-base. However, efficient trie-

based data structure can be used to store the discovered itemsets and allow 

for efficient generation of recommendations without the need to generate 

all association rules from frequent itemsets [389]. Such data structures are 

commonly used for string or sequence searching applications. In the con-

text of association rule mining, the frequent itemsets are stored in a di-

rected acyclic graph. This frequent itemset graph is an extension of the 

lexicographic tree used in the tree projection mining algorithm of Agarwal, 

et al. [2]. The graph is organized into levels from 0 to k, where k is the 

maximum size among all frequent itemsets. Each node at depth d in the 

graph corresponds to an itemset, X, of size d and is linked to itemsets of 

size d+1 that contain X at level d+1. The single root node at level 0 corre-

sponds to the empty itemset. To be able to search for different orderings of 

an itemset, all itemsets are sorted in lexicographic order before being in-

serted into the graph. If the graph is used to recommend items to a new 



474      12  Web Usage Mining

target user, that user’s active session is also sorted in the same manner be-

fore matching with itemsets. 

As an example, suppose that in a hypothetical Web site with user trans-

action data depicted in the left table of Fig. 12.12. Using a minimum sup-

port (minsup) threshold of 4 (i.e., 80%), the Apriori algorithm discovers 

the frequent itemsets given in the right table. For each itemset, the support 

is also given. The corresponding frequent itemset graph is depicted in Fig. 

12.13. 

A recommendation engine based on this framework matches the current 

user session window with the previously discovered frequent itemsets to 

find candidate items (pages) for recommendation. Given an active session 

window w and a group of frequent itemsets, the algorithm considers all the 

frequent itemsets of size |w| + 1 containing the current session window by 

performing a depth-first search of the Frequent Itemset Graph to level |w|.

The recommendation value of each candidate is based on the confidence of 

the corresponding association rule whose consequent is the singleton con-

taining the page to be recommended. If a match is found, then the children 

of the matching node n containing w are used to generate candidate rec-

ommendations. In practice, the window w can be incrementally decreased 

until a match is found with and itemset. For example, given user active 

session window <B, E>, the recommendation generation algorithm, using 

the graph of Fig. 12.13, finds items A and C as candidate recommenda-

tions. The recommendation scores of item A and C are 1 and 4/5, corre-

sponding to the confidences of the rules, B, E  A and B, E C, respec-

tively.

A problem with using a single global minimum support threshold in as-

sociation rule mining is that the discovered patterns will not include “rare” 

but important items which may not occur frequently in the transaction data. 

This is particularly important when dealing with Web usage data, it is of-

ten the case that references to deeper content or product-oriented pages oc-

Fig. 12.12. Web transactions and resulting frequent itemsets (minsup = 4) 



12.3 Discovery and Analysis of Web Usage Patterns      475 

cur far less frequently than those of top level navigation-oriented pages. 

Yet, for effective Web personalization, it is important to capture patterns 

and generate recommendations that contain these items. A mining method 

based on multiple minimum supports is proposed in [344] that allows 

users to specify different support values for different items. In this method, 

the support of an itemset is defined as the minimum support of all items 

contained in the itemset. For more details on mining using multiple mini-

mum supports, see Sect. 2.4. The specification of multiple minimum sup-

ports thus allows frequent itemsets to potentially contain rare items which 

are deemed important. It has been shown that the use of multiple support 

association rules in the context of Web personalization can dramatically 

increase the coverage (or recall) of recommendations while maintaining a 

reasonable precision [389]. 

12.3.4 Analysis of Sequential and Navigational Patterns 

The technique of sequential pattern mining attempts to find inter-session 

patterns such that the presence of a set of items is followed by another item 

in a time-ordered set of sessions or episodes. By using this approach, Web 

marketers can predict future visit patterns which will be helpful in placing 

advertisements aimed at certain user groups. Other types of temporal 

analysis that can be performed on sequential patterns include trend analy-

sis, change point detection, or similarity analysis. In the context of Web 

A(5) B(5) C(4) E(5)

AB (5) AC (4) AE (5) BC (4) CE (4) BE (5) 

ABC (4) 

ABCE (4) 

ACE (4)ABE (5) BCE (4) 

Fig. 12.13.  A frequent itemset graph. 



476      12  Web Usage Mining

usage data, sequential pattern mining can be used to capture frequent 

navigational paths among user trails.  

Sequential patterns (SPs) in Web usage data capture the Web page trails 

that are often visited by users, in the order that they were visited. Sequen-

tial patterns are those sequences of items that frequently occur in a suffi-

ciently large proportion of (sequence) transactions. A sequence s1s2…sn
occurs in a transaction t = p1, p2, . . . , pm (where n  m) if there exist n

positive integers 1  a1 < a2 < . . . < an  m, and si = pai for all i. We say 

that cs1 cs2…csn is a contiguous sequence in t if there exists an integer 0 

 b  m  n, and csi = pb+i for all i = 1 to n. In a contiguous sequential 

pattern (CSP), each pair of adjacent items, si and si+1, must appear con-

secutively in a transaction t which supports the pattern. A normal sequen-

tial pattern can represent non-contiguous frequent sequences in the under-

lying set of sequence transactions.  

Given a sequence transaction set T, the support (denoted by sup(S)) of a 

sequential (respectively, contiguous sequential) pattern S in T is the frac-

tion of transactions in T that contain S. The confidence of the rule X  Y,

where X and Y are (contiguous) sequential patterns, is defined as:

conf(X  Y) = sup(X  Y ) / sup(X) ,

where denotes the concatenation operator.  

In the context of Web usage data, CSPs can be used to capture frequent 

navigational paths among user trails [497]. In contrast, items appearing in 

SPs, while preserving the underlying ordering, need not be adjacent, and 

thus they represent more general navigational patterns within the site. Note 

that sequences and sequential patterns or rules discussed here are special 

cases of those defined in Sect. 2.9.  

The view of Web transactions as sequences of pageviews allows for a 

number of useful and well-studied models to be used in discovering or ana-

lyzing user navigation patterns. One such approach is to model the naviga-

tional activities in the Web site as a Markov model: each pageview (or a 

category) can be represented as a state and the transition probability be-

tween two states can represent the likelihood that a user will navigate from 

one state to the other. This representation allows for the computation of a 

number of useful user or site metrics. For example, one might compute the 

probability that a user will make a purchase, given that she has performed 

a search in an online catalog. Markov models have been proposed as the 

underlying modeling machinery for link prediction as well as for Web pre-

fetching to minimize system latencies [132, 473]. The goal of such ap-

proaches is to predict the next user action based on a user’s previous surf-

ing behavior. They have also been used to discover high probability user 

navigational trails in a Web site [57]. More sophisticated statistical learn-



12.3 Discovery and Analysis of Web Usage Patterns      477 

ing techniques, such as mixtures of Markov models, have also been used to 

cluster navigational sequences and perform exploratory analysis of users’ 

navigational behavior in a site [76].  

More formally, a Markov model is characterized by a set of states {s1,

s2, ... , sn} and a transition probability matrix, [Pri,j]n n, where Pri,j repre-

sents the probability of a transition from state si to state sj. Markov models 

are especially suited for predictive modeling based on contiguous se-

quences of events. Each state represents a contiguous subsequence of prior 

events. The order of the Markov model corresponds to the number of prior 

events used in predicting a future event. So, a kth-order Markov model 

predicts the probability of next event by looking the past k events. Given a 

set of all paths R, the probability of reaching a state sj from a state si via a 

(non-cyclic) path r  R is the product of all the transition probabilities 

along the path and is given by Pr(r) = Prm,m+1, where m ranges from i to j

1. The probability of reaching sj from si is the sum of these path prob-

abilities over all paths: Pr(j|i) = r R Pr(r).
As an example of how Web transactions can be modeled as a Markov 

model, consider the set of Web transaction given in Fig. 12.14 (left). The 

Web transactions involve pageviews A, B, C, D, and E. For each transac-

tion the frequency of occurrences of that transaction in the data is given in 

the table’s second column (thus there are a total of 50 transactions in the 

data set). The (absorbing) Markov model for this data is also given in Fig. 

12.14 (right). The transitions from the “start” state represent the prior prob-

abilities for transactions starting with pageviews A and B. The transitions 

into the “final” state represent the probabilities that the paths end with the 

specified originating pageviews. For example, the transition probability 

from the state A to B is 16/28 = 0.57 since out of the 28 occurrences of A 

in transactions, in 16 cases, B occurs immediately after A. 

Higher-order Markov models generally provide a higher prediction ac-

curacy. However, this is usually at the cost of lower coverage (or recall) 

and much higher model complexity due to the larger number of states. In 

order to remedy the coverage and space complexity problems, Pitkow and 

Pirolli [446] proposed all-kth-order Markov models (for coverage im-

provement) and a new state reduction technique, called longest repeating 

subsequences (LRS) (for reducing model size). The use of all-kth-order

Markov models generally requires the generation of separate models for 

each of the k orders: if the model cannot make a prediction using the kth

order, it will attempt to make a prediction by incrementally decreasing the 

model order. This scheme can easily lead to even higher space complexity 

since it requires the representation of all possible states for each k.

Deshpande and Karypis [132] proposed selective Markov models, intro-

ducing several schemes in order to tackle the model complexity problems 



478      12  Web Usage Mining

with all-kth-order Markov models. The proposed schemes involve pruning 

the model based on criteria such as support, confidence, and error rate. In 

particular, the support-pruned Markov models eliminate all states with low 

support determined by a minimum frequency threshold. 

Another way of efficiently representing contiguous navigational trails is 

by inserting each trail into a trie structure. A good example of this ap-

proach is the notion of aggregate tree introduced as part of the WUM (Web 

Utilization Miner) system [497]. The aggregation service of WUM extracts 

the transactions from a collection of Web logs, transforms them into se-

quences, and merges those sequences with the same prefix into the aggre-

gate tree (a trie structure). Each node in the tree represents a navigational 

subsequence from the root (an empty node) to a page and is annotated by 

the frequency of occurrences of that subsequence in the transaction data 

(and possibly other information such as markers to distinguish among re-

peat occurrences of the corresponding page in the subsequence). WUM 

uses a mining query language, called MINT, to discover generalized navi-

gational patterns from this trie structure. MINT includes mechanisms to 

specify sophisticated constraints on pattern templates, such as wildcards 

with user-specified boundaries, as well as other statistical thresholds such 

as support and confidence. This approach and its extensions have proved 

useful in evaluating the navigational design of a Web site [496]. 

As an example, again consider the set of Web transactions given in the 

previous example. Figure 12.15 shows a simplified version of WUM’s ag-

gregate tree structure derived from these transactions. Each node in the tree 

represents a navigational subsequence from the root (an empty node) to a 

page and is annotated by the frequency of occurrences of that subsequence 

in the session data.  The advantage of this approach is that the search for 

Transaction Frequency 

A, B, E 10 

B, D, B, C 4 

B, C, E 10 

A, B, E, F 6 

A, D, B 12 

B, D, B, E 8 

6/34

F

28/34

6/6

28/50

22/50

16/28 12/62

24/24

12/62 4/14

14/62

24/6

10/14

12/28
A

B

C

E

start

final

D

Fig. 12.14. An example of modeling navigational trails as a Markov 

h i



12.3 Discovery and Analysis of Web Usage Patterns      479 

navigational patterns can be performed very efficiently and the confidence 

and support for the navigational patterns can be readily obtained from the 

node annotations in the tree. For example, consider the contiguous naviga-

tional sequence <A, B, E, F>. The support for this sequence can be com-

puted as the support of the last page in the sequence, F, divided by the 

support of the root node: 6/50 = 0.12, and the confidence of the sequence 

is the support of F divided by the support of its predecessor, E, or 6/16 = 

0.375. If there are multiple branches in the tree containing the same navi-

gational sequence, then the support for the sequence is the sum of the sup-

ports for all occurrences of the sequence in the tree and the confidence is 

updated accordingly. For example, the support of the sequence <D, B> is 

(12+12)/50 = 0.48, while the confidence is the aggregate support for B di-

vided by the aggregate support for D, i.e., 24/24 = 1.0. The disadvantage of 

this approach is the possibly high space complexity, especially in a site 

with many dynamically generated pages.

12.3.5 Classification and Prediction based on Web User 
Transactions

Classification is the task of mapping a data item into one of several prede-

fined classes. In the Web domain, one is interested in developing a profile 

of users belonging to a particular class or category. This requires extraction 

and selection of features that best describe the properties of given the class 

or category. Classification can be done by using supervised learning algo-

rithms such as decision trees, naive Bayesian classifiers, k-nearest 

neighbor classifiers, and Support Vector Machines (Chap. 3). It is also 

50

S

A

B

D

D

C

B

B

E

E

B

F

C

E

28

22

12

10

12

16

12

10

16

12

6

4

8

Fig. 12.15. An example of modeling navigational trails in an aggregate tree



480      12  Web Usage Mining

possible to use previously discovered clusters and association rules for 

classification of new users (Sect. 3.5). 

Classification techniques play an important role in Web analytics appli-

cations for modeling the users according to various predefined metrics. For 

example, given a set of user transactions, the sum of purchases made by 

each user within a specified period of time can be computed. A classifica-

tion model can then be built based on this enriched data in order to classify 

users into those who have a high propensity to buy and those who do not, 

taking into account features such as users’ demographic attributes, as well 

their navigational activities.

Another important application of classification and prediction in the 

Web domain is that of collaborative filtering. Most collaborative filtering 

applications in existing recommender systems use k-nearest neighbor clas-

sifiers to predict user ratings or purchase propensity by measuring the cor-

relations between a current (target) user’s profile (which may be a set of 

item ratings or a set of items visited or purchased) and past user profiles in 

order to find users in the database with similar characteristics or prefer-

ences [236]. Many of the Web usage mining approaches discussed earlier 

can also be used to automatically discover user models and then apply 

these models to provide personalized content to an active user [386, 445].  

Basically, collaborative filtering based on the k-nearest neighbor (kNN) 

approach involves comparing the activity record for a target user with the 

historical records T of other users in order to find the top k users who have 

similar tastes or interests. The mapping of a visitor record to its neighbor-

hood could be based on similarity in ratings of items, access to similar con-

tent or pages, or purchase of similar items. In most typical collaborative 

filtering applications, the user records or profiles are a set of ratings for a 

subset of items. The identified neighborhood is then used to recommend 

items not already accessed or purchased by the active user. Thus, there are 

two primary phases in collaborative filtering: the neighborhood formation 

phase and the recommendation phase. In the context of Web usage mining, 

kNN involves measuring the similarity or correlation between the target 

user’s active session u (represented as a vector) and each past transaction 

vector v (where v  T). The top k most similar transactions to u are con-

sidered to be the neighborhood for the session u. More specifically, the 

similarity between the target user, u, and a neighbor, v, can be calculated 

by the Pearson’s correlation coefficient defined below: 

,
)()(

))((
),(

2

,

2

,

,,

Ci iCi i

Ci ii

rrrr

rrrr
sim

vvuu

vvuu
vu (5)

where C is the set of items that are co-rated by u and v (i.e., items that 



12.3 Discovery and Analysis of Web Usage Patterns      481 

have been rated by both of them), ru,i and rv,i are the ratings (or weights) of 

some item i for the target user u and a possible neighbor v respectively, 

and ur and vr are the average ratings (or weights) of u and v respectively. 

Once similarities are calculated, the most similar users are selected. 

It is also common to filter out neighbors with a similarity of less than a 

specific threshold to prevent predictions being based on very distant or 

negative correlations. Once the most similar user transactions are identi-

fied, the following formula can be used to compute the rating prediction of 

an item i for target user u.

V

V i

sim

rrsim
rip

v

v vv

u
vu

vu
u

),(

)(),(
),(

,
, (6)

where V is the set of k similar users, rv,i are the ratings of those users on 

item i, and sim(u, v) is the Pearson correlation described above. The for-

mula in essence computes the degree of preference of all the neighbors 

weighted by their similarity and then adds this to the target user's average 

rating, the idea being that different users may have different “baselines” 

around which their ratings are distributed.  

The problem with the user-based formulation of the collaborative filter-

ing problem is the lack of scalability: it requires the real-time comparison 

of the target user to all user records in order to generate predictions. A 

variation of this approach that remedies this problem is called item-based 

collaborative filtering [475]. Item-based collaborative filtering works by 

comparing items based on their pattern of ratings across users. Again, a 

nearest-neighbor approach can be used. The kNN algorithm attempts to 

find k similar items that are co-rated by different users similarly. The simi-

larity measure typically used is the adjusted cosine similarity given be-

low:

U jU i

U ji

rrrr

rrrr
jisim

u uuu uu

u uuuu

2

,

2

,

,,

)()(

))((
),( , (7)

where U is the set of all users, i and j are items, ru,i represents the rating of 

user u  U on item i, and ur is the average of the user u's ratings as before. 

Note that in this case, we are computing the pair-wise similarities among

items (not users) based on the ratings for these items across all users. After 

computing the similarity between items we select a set of k most similar 

items to the target item (i.e., the item for which we are interested in pre-

dicting a rating value) and generate a predicted value of user u’s rating by 

using the following formula 



482      12  Web Usage Mining

Jj

Jj j

jisim

jisimr
ip

),(

),(
)(

,u

 u, , (8)

where J is the set of k similar items, ru,j is the rating of user u on item j,

and sim(i, j) is the similarity between items i and j as defined above. It is 

also common to ignore items with negative similarity to the target item. 

The idea here is to use the user’s own ratings for the similar items to ex-

trapolate the prediction for the target item. 

12.4 Discussion and Outlook 

Web usage mining has emerged as the essential tool for realizing more 

personalized, user-friendly and business-optimal Web services. Advances 

in data pre-processing, modeling, and mining techniques, applied to the 

Web data, have already resulted in many successful applications in adap-

tive information systems, personalization services, Web analytics tools, 

and content management systems. As the complexity of Web applications 

and user’s interaction with these applications increases, the need for intel-

ligent analysis of the Web usage data will also continue to grow. 

Usage patterns discovered through Web usage mining are effective in 

capturing item-to-item and user-to-user relationships and similarities at the 

level of user sessions. However, without the benefit of deeper domain 

knowledge, such patterns provide little insight into the underlying reasons 

for which such items or users are grouped together. Furthermore, the in-

herent and increasing heterogeneity of the Web has required Web-based 

applications to more effectively integrate a variety of types of data across 

multiple channels and from different sources.  

Thus, a focus on techniques and architectures for more effective integra-

tion and mining of content, usage, and structure data from different sources 

is likely to lead to the next generation of more useful and more intelligent 

applications, and more sophisticated tools for Web usage mining that can 

derive intelligence from user transactions on the Web.  

Bibliographic Notes 

Web usage mining as a complete process, integrating various stages of data 

mining cycle, including data preparation, pattern discovery, and interpreta-


