(CE436) REMOTE SENSING AND GIS APPLICATIONS

(Elective -IV)

Program : B.Tech Lecture : 4/Week Year : IV Tutorial : 1/Week

Sem : II Practical : Int. Max Marks : 30 Credits : 4

Ext. Max Marks: 70

COURSE OBJECTIVES:

Students will be able to

- 1. Recall the terms of photogrammetry and photo-interpretation.
- 2. Summarize the basic elements involved in the operation of Remote Sensing & GIS.
- 3. Apply the knowledge of Remote Sensing & GIS in the field of Water Resources.
- 4. Evaluate Land use / Land cover studies for a given area.
- 5. Assess the impact of Droughts and Floods.
- 6. Estimate the Groundwater potential areas by using Remote Sensing & GIS techniques.

COURSE OUTCOMES:

Upon completion of this course, students will develop an ability to.....

- 1. Retrieve the basics of Aerial Photography, Remote Sensing and GIS.
- 2. Describe the working principle of interpretation of Aerial Photographs and Satellite image.
- 3. Summarize the data types, data storage and carry out the analysis of spatial and attribute data.
- 4. Distinguish between Raster GIS and Vector GIS.
- 5. Calculate the impact of the Floods and the Droughts.
- 6. Classify the areas having Groundwater potential.
- 7. Recommend the suitable sites for artificial recharge structures.
- 8. Estimate the depth of the water by using Remote Sensing & GIS tools.

Time Table:

Monday		Thursday	1	12:10 PM to 01:00 PM
Tuesday		Friday	2	01:30 PM to 03:10 PM
Wednesday		Saturday	2	09:30 AM to 11:10 AM

LESSON PLAN

Name of the Faculty: Mr. K Pavan Kumar

Course Number: CE 436

Academic Year: 2015 - 2016

Course Name: RS & GIS

Program: B. Tech.Branch: CEYear/Semester: IV/ IISection: A

UNIT – I: Introduction to Photogrammetry

- Define Aerial Photography and List out the types.
- Discuss Parallax measurement for height determination.
- Define Electromagnetic Spectrum.
- Explain the Basic Concepts of Remote Sensing.
- Distinguish the Remote Sensing terminology.

Lect.	Topic of the lecture	Schedule Date
No.	P	DD/MM/YY
1	Introduction to Photogrammetry	10/12/15
2	Principle and Types of Aerial Photographs	11/12/15
3	Stereoscopy, Map Vs Mosaic	11/12/15
4	Ground control, Parallax	12/12/15
5	Parallax measurements for height determination	17/12/2015
6	Remote Sensing - I	17/12/2015
7	Basic concepts and	18/12/2015
8	Foundation of Remote Sensing	18/12/2015
9	Elements involved in Remote Sensing	19/12/2015
10	Electromagnetic Spectrum	24/12/2015
11	Remote Sensing terminology	26/12/2015
12	and the Units	26/12/2015

UNIT-II: Remote Sensing - II

Learning Objectives: At the end of the unit, the students will be able to......

- Outline the Energy interactions with earth surface features and atmosphere.
- Define Resolution, Sensors and Satellites.
- Explain about the Visual Interpretation Techniques.
- Evaluate the Terrain and its conditions.
- Asses the spectral properties of the water bodies.

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the fecture	DD/MM/YY
1	Energy resources	01/01/16
2	Energy interactions with Earth Surface features and atmosphere	02/01/16
3	Resolution, Sensors and Satellites	02/01/16
4	Visual Interpretation Techniques	07/01/16
5	Basic elements	07/01/16
6	Converging evidence	08/01/16
7	Interpretation for Terrain evaluation	09/01/16
8	Speatral properties of water hadies	16/01/16
0	Spectral properties of water bodies	21/01/16
9	Introduction to Digital Data Analysis	22/01/16
	Introduction to Digital Data Analysis	23/01/16

UNIT-III: Geographical Information System

- Retrieve the GIS Terminology
- Describe the Fundamental operations of GIS
- Distinguish between Computational Analysis Methods and Visual Analysis Methods.
- Execute data manipulation and Analysis.
- Compile Spatial and attribute data for Integrated Analysis.

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the lecture	DD/MM/YY
1	Introduction to GIS	28/01/16
2	GIS definition and terminology	29/01/16
3	GIS categories and components	30/01/16

4	Fundamental operations of GIS	30/01/16
5	A theoretical framework of GIS	04/02/16
6	Spatial Analysis	04/02/16
7	Computational Analysis Methods (CAM)	05/02/16
8	Visual Analysis Methods (VAM)	05/02/16
9	Data Storage – Vector data Storage	06/02/16
10	Data Storage – Attribute data Storage	11/02/16
11	Overview of the data manipulation and Analysis	11/02/16
12	Integrated Analysis of Spatial and Attribute data.	12/02/16

UNIT-IV: Types of Data Representation

- List out the types of data and entry procedure.
- Explain coordinate geometry procedure of data entry.
- Execute manual digitizing and Scanning.
- Distinguish between Raster GIS and Vector GIS.
- Decide Feature based GIS mapping for an application.

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY
1	Data collection and input overview	13/02/16
2	Data input and data output	18/02/16
3	Keyboard entry and coordinate geometry procedure	19/02/16
4	Manual digitization and Scanning	20/02/16
5	Raster GIS	20/02/16
6	Vector GIS	20/02/16
7	File Management	25/02/16
8	Spatial Data	25/02/16
9	Layer based GIS	26/02/16
10	Feature based GIS mapping	26/02/16

UNIT-V: Water Resources Applications – I & II

- Compute the runoff generated from the Watershed.
- Estimate the impact of Droughts and Floods.
- Asses the available resources in a Watershed.
- Recommend the suitable areas for Groundwater targeting.
- Design Artificial recharge structures
- Apply the knowledge of Remote Sensing and GIS in the field of Water Resources.

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY
1	Water Resources Applications – I	
1	Land use / Land cover in water resources	27/02/16
2	Surface water mapping and Inventory	03/03/16
3	Rainfall – Runoff relations and potential potential indices of watersheds.	03/03/16
4	Flood and Drought Impact assessment and monitoring	04/03/16
4	Flood and Drought impact assessment and mointoring	05/03/16
5	Watershed Management for Sustainable development	10/03/16
6	Watershed Characteristics.	11/03/16
7	Water Resources Applications – II	12/03/16
,	Reservoir Sedimentation, Fluvial Geomorphology	17/03/16
8	Water Resources Management and Monitoring	17/03/16
9	Groundwater Targeting	18/03/16
10	Identification of Sites for Artificial Recharge Structures.	19/03/16
11	Drainage Morphometry	19/03/16
12	Inland water quality Survey and Management	26/03/16
13	Water depth estimation and Bathymetry	26/03/16

Sr. No	Type of exam	Scheduled date (DD/MM/YY)
1	Mid semester exam - I	01/02/16 to 03/02/16
2	Mid semester exam - II	31/03/16 to 02/04/16
3	End semester exam (Regular)	04/04/16 to 30/04/16
4	End semester exam (Supplementary)	23/04/16 to 18/05/16

(CE436) REMOTE SENSING AND GIS APPLICATIONS

(Elective -IV)

Program : B.Tech Lecture : 4/Week Year : IV Tutorial : 1/Week

Sem : II Practical : Int. Max Marks : 30 Credits : 4

Ext. Max Marks: 70

COURSE OBJECTIVES:

Students will be able to

1. Recall the terms of photogrammetry and photo-interpretation.

- 2. Summarize the basic elements involved in the operation of Remote Sensing & GIS.
- 3. Apply the knowledge of Remote Sensing & GIS in the field of Water Resources.
- 4. Evaluate Land use / Land cover studies for a given area.
- 5. Assess the impact of Droughts and Floods.
- 6. Estimate the Groundwater potential areas by using Remote Sensing & GIS techniques.

COURSE OUTCOMES:

Upon completion of this course, students will develop an ability to.....

- 1. Retrieve the basics of Aerial Photography, Remote Sensing and GIS.
- 2. Describe the working principle of interpretation of Aerial Photographs and Satellite image.
- 3. Summarize the data types, data storage and carry out the analysis of spatial and attribute data.
- 4. Distinguish between Raster GIS and Vector GIS.
- 5. Calculate the impact of the Floods and the Droughts.
- 6. Classify the areas having Groundwater potential.
- 7. Recommend the suitable sites for artificial recharge structures.
- 8. Estimate the depth of the water by using Remote Sensing & GIS tools.

Time Table:

Monday		Thursday	2	09:30 AM to 11:10 AM
Tuesday		Friday	2	09:30 AM to 11:10 AM
Wednesday		Saturday	1	12:10 PM to 01:00 PM

LESSON PLAN

Name of the Faculty: Mr. K Pavan Kumar

Course Number: CE 436

Academic Year: 2015 - 2016

Course Name: RS & GIS

Program: B. Tech.Branch: CEYear/Semester: IV/ IISection: B

UNIT – I: : Introduction to Photogrammetry

- Define Aerial Photography and List out the types.
- Discuss Parallax measurement for height determination.
- Define Electromagnetic Spectrum.
- Explain the Basic Concepts of Remote Sensing.
- Distinguish the Remote Sensing terminology.

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the fecture	DD/MM/YY
1	Introduction to Photogrammetry	10/12/15
2	Principle and Types of Aerial Photographs	11/12/15
3	Stereoscopy, Map Vs Mosaic	11/12/15
4	Ground control, Parallax	12/12/15
5	Parallax measurements for height determination	17/12/2015
6	Remote Sensing - I	17/12/2015
7	Basic concepts and	18/12/2015
8	Foundation of Remote Sensing	18/12/2015
9	Elements involved in Remote Sensing	19/12/2015
10	Electromagnetic Spectrum	24/12/2015
11	Remote Sensing terminology	26/12/2015
12	and the Units	26/12/2015

UNIT-II: Remote Sensing - II

Learning Objectives: At the end of the unit, the students will be able to......

- Outline the Energy interactions with earth surface features and atmosphere.
- Define Resolution, Sensors and Satellites.
- Explain about the Visual Interpretation Techniques.
- Evaluate the Terrain and its conditions.
- Asses the spectral properties of the water bodies.

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY
1	Energy resources	01/01/16
2	Energy interactions with Earth Surface features and atmosphere	02/01/16
3	Resolution, Sensors and Satellites	02/01/16
4	Visual Interpretation Techniques	07/01/16
5	Basic elements	07/01/16
6	Converging evidence	08/01/16
7	Interpretation for Terrain evaluation	09/01/16
8	Spectral properties of weter hadies	16/01/16
0	Spectral properties of water bodies	21/01/16
0	Introduction to Digital Data Analysis	22/01/16
9	Introduction to Digital Data Analysis	23/01/16

UNIT-III: Geographical Information System

- Retrieve the GIS Terminology
- Describe the Fundamental operations of GIS
- Distinguish between Computational Analysis Methods and Visual Analysis Methods.
- Execute data manipulation and Analysis.
- Compile Spatial and attribute data for Integrated Analysis.

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY
1	Introduction to GIS	28/01/16
2	GIS definition and terminology	29/01/16

3	GIS categories and components	30/01/16
4	Fundamental operations of GIS	30/01/16
5	A theoretical framework of GIS	04/02/16
6	Spatial Analysis	04/02/16
7	Computational Analysis Methods (CAM)	05/02/16
8	Visual Analysis Methods (VAM)	05/02/16
9	Data Storage – Vector data Storage	06/02/16
10	Data Storage – Attribute data Storage	11/02/16
11	Overview of the data manipulation and Analysis	11/02/16
12	Integrated Analysis of Spatial and Attribute data.	12/02/16

UNIT-IV: Types of Data Representation

- List out the types of data and entry procedure.
- Explain coordinate geometry procedure of data entry.
- Execute manual digitizing and Scanning.
- Distinguish between Raster GIS and Vector GIS.
- Decide Feature based GIS mapping for an application.

Lect.	Topic of the lecture	Schedule Date
No.		DD/MM/YY
1	Data collection and input overview	13/02/16
2	Data input and data output	18/02/16
3	Keyboard entry and coordinate geometry procedure	19/02/16
4	Manual digitization and Scanning	20/02/16
5	Raster GIS	20/02/16
6	Vector GIS	20/02/16
7	File Management	25/02/16
8	Spatial Data	25/02/16
9	Layer based GIS	26/02/16
10	Feature based GIS mapping	26/02/16

UNIT-V: Water Resources Applications – I & II

- Compute the runoff generated from the Watershed.
- Estimate the impact of Droughts and Floods.
- Asses the available resources in a Watershed.
- Recommend the suitable areas for Groundwater targeting.
- Design Artificial recharge structures.
- Apply the knowledge of Remote Sensing and GIS in the field of Water Resources.

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY
1	Water Resources Applications – I	
	Land use / Land cover in water resources	27/02/16
2	Surface water mapping and Inventory	03/03/16
3	Rainfall – Runoff relations and potential potential indices of watersheds.	03/03/16
4	Flood and Drought Impact assessment and monitoring	04/03/16
4		05/03/16
5	Watershed Management for Sustainable development	10/03/16
6	Watershed Characteristics.	11/03/16
7	Water Resources Applications – II	12/03/16
,	Reservoir Sedimentation, Fluvial Geomorphology	17/03/16
8	Water Resources Management and Monitoring	17/03/16
9	Groundwater Targeting	18/03/16
10	Identification of Sites for Artificial Recharge Structures.	19/03/16
11	Drainage Morphometry	19/03/16
12	Inland water quality Survey and Management	26/03/16
13	Water depth estimation and Bathymetry	26/03/16

Sr. No	Type of exam	Scheduled date (DD/MM/YY)
1	Mid semester exam - I	01/02/16 to 03/02/16
2	Mid semester exam - II	31/03/16 to 02/04/16
3	End semester exam (Regular)	04/04/16 to 30/04/16
4	End semester exam (Supplementary)	23/04/16 to 18/05/16