(13ME214) HYDRAULICS AND HYDRAULIC MACHINERY

Program: B.TechYear: IISem: IIInt. Max Marks: 30Ext. Max Marks: 70

Lecture : 4/Week Tutorial : 1/Week Practical : -Credits : 4

COURSE OBJECTIVES:

Students will be able to

- 1. Discuss the types of open channels and design the most economical sections.
- 2. Apply the methods of dimensional analysis & its importance.
- 3. Apply the momentum principles to calculate the forces expected by a liquid jet.
- 4. Classify and explain the working principles of turbines and pumps.
- 5. Sketch the general arrangement of hydro electric power plant in elevation

COURSE OUTCOMES:

Upon completion of this course, students will develop an ability to.....

- 1. Analyze the uniform and non uniform flows in open channels.
- 2. Design open channels for most economical sections like rectangular trapezoidal and circular sections
- 3. Discriminate the use of dimensional analysis in solving fluid problems and plan hydraulic similitude studies.
- 4. Explaining the basics of the hydro machinery and the components, functions and use of difficult types of turbines and pumps.
- 5. Estimation of hydro power potential.
- 6. Design of draft tubes and functions of draft tube.
- 7. Explain the working principles of all the turbines and pumps.
- 8. Compute efficient flow turbines.

Time Table:

Monday			Thursday	2	09:30 AM to 11:10 AM
Tuesday	2	02:30PM to 04:00PM	Friday	1	10:20 AM to 11:10 AM
Wednesday			Saturday		

LESSON PLAN

Name of the Faculty: M.SravanthiCourse Number: 13ME214Program: B. Tech.Year/Semester: II/ II

Academic Year: 2015 - 2016Course Name : H&HMBranch: CESection: A

UNIT – I: Open channel flow						
Learning	Learning Objectives: At the end of the unit, the students will be able to					
• Classi	fy the types of flows and types of channels					
• Design	n of Most economical section					
• Know	computation of Critical depth in a flow					
• Design	n of hydraulic jump in an open channel flow					
• Distin	guish between uniform flows and Non uniform flows					
Last		Schedule				
Leci. No	Topic of the lecture	Date				
INU.		DD/MM/YY				
1	Introduction to open channel flow, Types of flows	08/12/15				
2	Type of flows and channels, explanation with figures	09/12/15				
3	Chezy's, Manning's and Basin formulae for uniform flows and Problems	11/12/15				
4	Most economical section of rectangular trapezoidal and circular sections	12/12/15				
5	Problems on rectangular trapezoidal and circular sections	22/12/15				
6	Flow through open circular channel and Problems	31/12/15				
7	Most economical circular channel section derivation and Problems	05/01/16				
8	Critical flow, specific energy- critical depth and computation of critical	08/01/16				
0	depth for various conditions	00/01/10				
9	Problems on Critical depth, critical velocity, critical flow	08/01/16				
10	Rapidly varied flow, Hydraulic jump	12/01/16				
11	Derivation of hydraulic jump, energy dissipation	20/01/16				
12	Problem on hydraulic jump and losses	21/01/16				
13	Dynamic equation for G.V.F for steep, horizontal	21/01/16				

UNIT-II: Hydraulic similitude

Learning Objectives: At the end of the unit, the students will be able to.....

- List out Dimensions of various physical quantities
- Compare Rayleigh's method and Buckingham's pi method
- Analyze the hydraulic model using dimensional analysis
- Analyze model and prototype relations

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the fecture	DD/MM/YY
1	Introductions of Dimensional analysis	22/01/16
2	Rayleigh's method	22/01/16
3	Problems on Rayleigh's method	28/01/16
4	Buckingham's pi method	28/01/16
5	Problems on Buckingham's pi method	29/01/16
6	Study of Hydraulic models	04/02/16
7	Geometric, kinematic and dynamic similarities	04/02/1
8	Dimensionless numbers	05/02/16
9	Model and prototype relations	09/02/16
10	Problems on dimensionless numbers	09/02/16

UNIT-III: Basic of turbo machinery

- Analyze hydrostatic forces of jets on stationary and moving vanes
- Analyze hydrostatic forces of jets on inclined and curved vanes
- Explain velocity triangles at inlet and outlet
- Explain expression for work done and efficiency
- Apply angular momentum principle

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the fecture	DD/MM/YY
1	Hydrodynamic force of jets on stationary Flat blades	11/02/16
2	Hydrodynamic force of jets on stationary inclined blades	12/02/16
3	Hudrodynamia force of jate on stationary auruad blades	16/02/16
	Hydrodynamic force of jets on stationary curved blades	18/02/16
4	Problems on stationary blades	18/02/16
5	Hydrodynamic force of jets on moving Flat and curved blades	19/02/16
6	Problems on moving Flat and curved blades	23/02/16

7	Jet striking centrally and at tip	23/02/16
8	Velocity triangles at inlet and outlet	25/02/16
9	Expressions for work done and efficiency	25/02/16
10	Problems on efficiency	26/02/16
11	Angular momentum principle	01/03/16
12	Applications to radial flow turbines	03/03/16
13	Problems of radial flow turbines	04/03/16

UNIT-IV: Hydraulic turbines and pumps

- Classify the types of turbines
- Explain the working principles of various turbines
- Compare between impulse and reaction turbines
- Classify the types of pumps
- Compare between centrifugal and reciprocating pump
- Explain the expression for work done and efficiencies for turbines and pumps

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY
1	Layout of a typical Hydropower installation Heads and efficiencies	08/03/16
2	Classification of turbines- Pelton wheel, Francis, Kaplan	10/03/16
3	Working principles of Pelton wheel, fancies, Kaplan	10/03/16
4	Problems and design of Pelton wheel, fancies, Kaplan	11/03/16
5	Working proportions, velocity diagram, Work done and efficiency	15/03/16
6	Problems on Work done and efficiency	15/03/16
7	Hydraulic design, draft tube ,theory and function efficiency, Governing of turbines-surge tanks	17/03/16
8	Unit and specific turbines-unit speed-unit quantity-unit power	17/03/16
9	Pump installation details-classification-work done.	18/03/16
10	Manometric head-minimum starting speed, Losses and efficiencies, Specific speed	22/03/16
11	Multistage pumps-pumps in parallel	22/03/16
12	Performance of pumps-characteristic curves	24/03/16
13	NPSH- Cavitation, Problems on pumps	25/03/16

UNIT-V: Hydropower engineering

- Classification of hydro power plants
- Sketch the general arrangement of hydroelectric power plant in elevation
- Computation of load factor, utilization and capacity factors
- Estimation of hydro power potential

Lect.	Topic of the lecture	Schedule Date
No.	•	DD/MM/YY
1	Hydropower Engineering: Classification of Hydropower plants.	29/03/16
2	Definition of terms – load factor, utilization factor.	29/03/16
3	Capacity factor & Problems.	29/03/16
4	Estimation of hydropower potential.	30/03/16
5	Problems on plant factors.	30/03/16
6	Previous papers discussion.	30/03/16
7	Tutorial.	30/03/16

Sr. No	Type of exam	Scheduled date (DD/MM/YY)
1	Mid semester exam - I	01/02/16 to 03/02/16
2	Mid semester exam - II	31/03/16 to 02/04/16
3	End semester exam (Regular)	04/04/16 to 30/04/16
4	End semester exam (Supplementary)	23/04/16 to 18/05/16

(13ME214) HYDRAULICS AND HYDRAULIC MACHINERY

Program: B.TechYear: IISem: IIInt. Max Marks: 30Ext. Max Marks: 70

Lecture : 4/Week Tutorial : 1/Week Practical : -Credits : 4

COURSE OBJECTIVES:

The Students will be able to

- 6. Discuss the types of open channels and design the most economical sections.
- 7. Apply the methods of dimensional analysis & its importance.
- 8. Apply the momentum principles to calculate the forces expected by a liquid jet.
- 9. Classify and explain the working principles of turbines and pumps.
- 10. Sketch the general arrangement of hydro electric power plant in elevation

COURSE OUTCOMES:

At the end of the course, students will develop an ability to.....

- 9. Analyze the uniform and non uniform flows in open channels.
- 10. Design open channels for most economical sections like rectangular trapezoidal and circular sections
- 11. Discriminate the use of dimensional analysis in solving fluid problems and plan hydraulic similitude studies.
- 12. Explaining the basics of the hydro machinery and the components, functions and use of difficult types of turbines and pumps.
- 13. Estimation of hydro power potential.
- 14. Design of draft tubes and functions of draft tube.
- 15. Explain the working principles of all the turbines and pumps.
- 16. Compute efficient flow turbines.

Time Table:

Monday	1	1:30P.M to 2:20P.M	Thursday		
Tuesday	2	11:10AM to 12:50PM	Friday		
Wednesday			Saturday	2	9:30AM to 11:10A.M

LESSON PLAN

Name of the Faculty	: A. Ramya
Course Number	:13ME214
Program	: B. Tech.
Year/Semester	: II/ II

Academic Year: 2015 - 2016Course Name: H&HMBranch: CESection: B

UNIT - I: Open channel flow, Critical flow

- Classify the types of flows and types of channels
- Design of Most economical section
- Know computation of Critical depth in a flow
- Design of hydraulic jump in an open channel flow
- Distinguish between uniform flows and Non uniform flows

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY			
1	Introduction to open channel flow, Types of flows	07/12/15			
2	Type of flows and channels, explanation with figures	08/12/15			
3	Chezy's, Manning's and Bazin's formulae(derivations) for uniform flows and Problems	08/12/15 12/12/15			
4	Problems on manning's, Bazin's formula on rectangular section	14/12/15			
5	Problems on Chezy's of triangular, trapezoidal and channels	15/12/15			
6	Most economical section-trapezoidal(derivation and problems)	19/12/15			
0	Flow through open circular channel and Problems	21/12/15			
7	Most economical circular channel-derivation and Problems	22/12/15			
/	Critical flow, specific energy- critical depth, critical velocity	26/12/15			
8	Computation of critical depth for various conditions and problems on	26/12/15			
0	Critical depth, critical velocity, critical flow	28/12/15			
9	Non –uniform flows- Rapidly varied flow, Hydraulic jump	29/12/15			
10	Hydraulic jump expression(full derivation) and expression for loss of	02/01/16			
10	energy due to hydraulic jump	04/01/16			
	Expression for depth of hydraulic jump in terms of upstream Froude	05/01/16			
11	number and problems	09/01/16			
		11/01/16			
12	Problem on hydraulic jump and losses Dynamic equation for G V E for	12/01/16			
	steen horizontal	18/01/16			
		19/01/16			

UNIT-II: Hydraulic similitude

Learning Objectives: At the end of the unit, the students will be able to.....

- List out Dimensions of various physical quantities
- Compare Rayleigh's method and Buckingham's pi method
- Analyze the hydraulic model using dimensional analysis
- Analyze model and prototype relations

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the fecture	DD/MM/YY
1	Introductions of Dimensional analysis	23/01/16
2	Rayleigh's method	23/01/16
3	Problems on Rayleigh's method	30/01/16
4	Buckingham's pi method	06/02/16
5	Problems on Buckingham's pi method	06/02/16
6	Study of Hydraulic models	06/02/16
7	Geometric, kinematic and dynamic similarities	08/02/16
8	Dimensionless numbers	09/02/16
9	Model and prototype relations	09/02/16
10	Problems on dimensionless numbers	09/02/16

UNIT-III: Basic of turbo machinery

- Analyze hydrostatic forces of jets on stationary and moving vanes
- Analyze hydrostatic forces of jets on inclined and curved vanes
- Explain velocity triangles at inlet and outlet
- Explain expression for work done and efficiency
- Apply angular momentum principle

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the fecture	DD/MM/YY
1	Hydrodynamic force of jets on stationary Flat blades	13/02/16
2	Hydrodynamic force of jets on stationary inclined blades	13/02/16
3	Hydrodynamic force of jets on stationary curved blades	15/02/16
4	Problems on stationary blades	16/02/16
5	Hydrodynamic force of jets on moving Flat and curved blades	16/02/16
6	Problems on moving Flat and curved blades	20/02/16

7	Jet striking centrally and at tip	20/02/16
8	Velocity triangles at inlet and outlet	20/02/16
9	Expressions for work done and efficiency	22/02/16
10	Problems on efficiency	23/02/16
11	Angular momentum principle	23/02/16
12	Applications to radial flow turbines	23/02/16
13	Problems of radial flow turbines	29/02/16

UNIT-IV: Hydraulic turbines and pumps

- Classify the types of turbines
- Explain the working principles of various turbines
- Compare between impulse and reaction turbines
- Classify the types of pumps
- Compare between centrifugal and reciprocating pump
- Explain the expression for work done and efficiencies for turbines and pumps

Lect.	Topic of the lecture	Schedule Date
No.	Topic of the fecture	DD/MM/YY
1	Layout of a typical Hydropower installation Heads and efficiencies	29/02/16
2	Classification of turbines- Pelton wheel, Francis, Kaplan	01/03/16
3	Working principles of Pelton wheel, fancies, Kaplan	01/03/16
4	Problems and design of Pelton wheel, fancies, Kaplan	08/03/16
5	Working proportions, velocity diagram, Work done and efficiency	12/03/16
6	Problems on Work done and efficiency	14/03/16
7	Hydraulic design, draft tube ,theory and function efficiency, Governing of turbines-surge tanks	15/03/16
8	Unit and specific turbines-unit speed-unit quantity-unit power	15/03/16 19/03/16
9	Pump installation details-classification-work done.	19/03/16
10	Manometric head-minimum starting speed, Losses and efficiencies, Specific speed	21/03/16
11	Multistage pumps-pumps in parallel	22/03/16
12	Performance of pumps-characteristic curves	22/03/16
13	NPSH- Cavitation, Problems on pumps	26/03/16

UNIT-V: Hydropower engineering

- Classification of hydro power plants
- Sketch the general arrangement of hydroelectric power plant in elevation
- Computation of load factor, utilization and capacity factors
- Estimation of hydro power potential

Lect. No.	Topic of the lecture	Schedule Date DD/MM/YY
1	Hydropower Engineering: Classification of Hydropower plants.	28/03/16
2	Definition of terms – load factor, utilization factor.	28/03/16
3	Capacity factor & Problems.	28/03/16
4	Estimation of hydropower potential.	29/03/16
5	Problems on plant factors.	29/03/16
6	Previous papers discussion.	29/03/16

Sr. No	Type of exam	Scheduled date (DD/MM/YY)
1	Mid semester exam - I	01/02/16 to 03/02/16
2	Mid semester exam - II	31/03/16 to 02/04/16
3	End semester exam (Regular)	04/04/16 to 30/04/16
4	End semester exam (Supplementary)	23/04/16 to 18/05/16